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Shape Classification Using the Inner-Distance
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Abstract—Part structure and articulation are of fundamental importance in computer and human vision. We propose using the inner-

distance to build shape descriptors that are robust to articulation and capture part structure. The inner-distance is defined as the length of

the shortest path between landmark points within the shape silhouette. We show that it is articulation insensitive and more effective at

capturing part structures than the Euclidean distance. This suggests that the inner-distance can be used as a replacement for the

Euclidean distance to build more accurate descriptors for complex shapes, especially for those with articulated parts. In addition, texture

information along the shortest path can be used to further improve shape classification. With this idea, we propose three approaches to

using the inner-distance. The first method combines the inner-distance and multidimensional scaling (MDS) to build articulation invariant

signatures for articulated shapes. The second method uses the inner-distance to build a new shape descriptor based on shape contexts.

The third one extends the second one by considering the texture information along shortest paths. The proposed approaches have been

tested on a variety of shape databases, including an articulated shape data set, MPEG7 CE-Shape-1, Kimia silhouettes, the ETH-80

data set, two leaf data sets, and a human motion silhouette data set. In all the experiments, our methods demonstrate effective

performance compared with other algorithms.

Index Terms—Computer vision, invariants, object recognition, shape, shape distance, texture, articulation.
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1 INTRODUCTION

PART structure plays a very important role in classifying
complex shapes in both human vision and computer

vision [21], [6], [23], etc. However, capturing part structure
is not a trivial task, especially considering articulations,
which are nonlinear transformations between shapes. To
make things worse, sometimes shapes can have ambiguous
parts (e.g., [4]). Unlike many previous methods that deal
with part structure explicitly, we propose an implicit
approach to this task.

In this paper, we introduce the inner-distance, defined as
the length of the shortest path within the shape boundary, to
build shape descriptors. It is easy to see that the inner-
distance is insensitive to shape articulations. For example, in
Fig. 1, although the points on shapes Figs. 1a and 1c have
similar spatial distributions, they are quite different in their
part structures. On the other hand, shapes Figs. 1b and 1c
appear to be from the same category with different articula-
tions. The inner-distance between the two marked points is
quite different in Figs. 1a and 1b, while almost the same in
Figs. 1b and 1c. Intuitively, this example shows that the inner-
distance is insensitive to articulation and sensitive to part
structures, a desirable property for complex shape compar-
ison. Note that the Euclidean distance does not have these
properties in this example. This is because, defined as the
length of the line segment between landmark points, the
Euclidean distance does not consider whether the line
segment crosses shape boundaries. In this example, it is clear
that the inner-distance reflects part structure and articulation
without explicitly decomposing shapes into parts. We will

study this problem in detail and give more examples in the
following sections.

It is natural to use the inner-distance as a replacement for
other distance measures to build new shape descriptors that
are invariant/insensitive to articulation. In this paper, we
propose and experiment with two approaches. In the first
approach, by replacing the geodesic distance with the inner-
distance, we extend the bending invariant signature for
3D surfaces [12] to the articulation invariant signature for
2D articulated shapes. In the second method, the inner-
distance replaces the Euclidean distance to extend the shape
context [5]. We design a dynamic programming method for
silhouettematchingthat is fastandaccuratesince itutilizes the
ordering information between contour points. Both ap-
proaches are tested on a variety of shape databases, including
an articulated shape database,1 MPEG7 CE-Shape-1 shapes,
Kimia’s silhouette [40], [39], ETH-80 [26], a Swedish leaf
database [42], and a Smithsonian leaf database [2]. The
excellent performance demonstrates the inner-distance’s
ability to capture part structures (not just articulations).

In practice, it is often desirable to combine shape and
texture information for object recognition. For example,
leaves from different species often share similar shapes but
have different vein structures (e.g., Fig. 13). Using the
gradient information along the shortest path, we propose a
new shape descriptor that naturally takes into account the
texture information inside a given shape. The new
descriptor is applied to a foliage image task and excellent
performance is observed.

The rest of this paper is organized as follows: Section 2
discusses related works. Section 3 first gives the definition of
the inner-distance and its computation. Then, the articulation
insensitivity of the inner-distance is proven. After that, we
address the inner-distance’s ability to capture part structures.
Section 4 describes using the inner-distance and MDS to build
articulation insensitive signatures for 2D articulated shapes.
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Section 5 describes the extension of the shape context using
the inner-distance and gives a framework for using dynamic
programming for silhouette matching and comparison.
Section 6 introduces the new shape descriptor that captures
texture information. Section 7 presents and analyzes all
experiments. Section 8 concludes the paper.

2 RELATED WORK

2.1 Representation and Comparison of Shapes with
Parts and Articulation

For general shape matching, a recent review is given in [45].
Roughly speaking, works handling parts can be classified into
three categories. The first category (e.g., [3], [19], [14], [37],
[15], [46], etc.) builds part models from a set of sample images
and usually with some prior knowledge such as the number of
parts. After that, the models are used for retrieval tasks such
as object recognition and detection. These works usually use
statistical methods to describe the articulation between parts
and often require a learning process to find the model
parameters. For example, Grimson [19] proposed some early
work performing matching with precise models of articula-
tion. Agarwal et al. [3] proposed a framework for object
detection via learning sparse, part-based representations. The
method is targeted to objects that consist of distinguishable
parts with relatively fixed spatial configuration. Felzensz-
walb and Huttenlocher [14] described a general method to
statistically model objects with parts for recognition and
detection. The method models appearance and articulation
separately through parameter estimation. After that, the
matching algorithm is treated as an energy minimization
problem that can be solved efficiently by assuming that the
pictorial representation has a tree structure. Schneiderman
and Kanade [37] used a general definition of parts that
corresponds to a transform from a subset of wavelet
coefficients to a discrete set of values, then builds classifiers
based on their statistics. Fergus et al. [15] treated objects as
flexible constellations of parts and probabilistically repre-
sented objects using their shape and appearance information.
These methods have been successfully used in areas such as
face and human motion analysis, etc. However, for tasks
where the learning process is prohibited, either due to the lack
of training samples or due to the complexity of the shapes,
they are hard to apply.

In contrast, the other two categories (e.g. [23], [4], [39],
[41], [17], [30], etc.) capture part structures from only one
image. The second category (e.g., [4], [30]) measures the
similarity between shapes via a part-to-part (or segment-to-
segment) matching and junction parameter distribution.
These methods usually use only the boundary information
such as the convex portions of silhouettes and curvatures of
boundary points.

The third category, which our method belongs to, captures
the part structure by considering the interior of shape
boundaries. The most popular examples are the skeleton-
based approaches, particularly the shock graph-based techni-
ques ([23], [41], [39], etc.). Given a shape and its boundary,
shocks are defined as the singularities of a curve evolution
process that usually extracts the skeleton simultaneously. The
shocks are then organized into a shock graph, which is a
directed, acyclic tree. The shock graph forms a hierarchical
representation of the shape and naturally captures its part
structure. The shape matching problem is then reduced to a
tree matching problem. Shock graphs are closely related to
shape skeletons or the medial axis [7], [23]. Therefore, they
benefit from the skeleton’s ability to describe shape, includ-
ing robustness to articulation and occlusion. However, they
also suffer from the same difficulties as the skeleton,
especially in dealing with boundary noise. Another related
unsupervised approach is proposed by Gorelick et al. [17].
They used the average length of random walks of points
inside a shape silhouette to build shape descriptors. The
average length is computed as a solution to the Poisson
equation. The solution can be used for shape analysis tasks
such as skeleton and part extraction, local orientation
detection, shape classification, etc.

The inner-distance is closely related to the skeleton-
based approaches in that it also considers the interior of the
shape. Given two landmark points, the inner-distance can
be “approximated” by first finding their closest points on
the shape skeleton, then measuring the distance along the
skeleton. In fact, the inner-distance can also be computed
via the evolution equations starting from boundary points.
The main difference between the inner-distance and the
skeleton-based approaches is that the inner-distance dis-
cards the structure of the path once their lengths are
computed. By doing this, the inner-distance is more robust
to disturbances along boundaries and becomes very flexible
for building shape descriptors. For example, it can be easily
used to extend existing descriptors by replacing Euclidean
distances. In addition, the inner-distance-based descriptors
can be used for landmark point matching. This is very
important for some applications such as motion analysis.
The disadvantage is the loss of the ability to perform part
analysis. It is an interesting future work to see how to
combine the inner-distance and skeleton-based techniques.

2.2 Geodesic Distances for 3D Surfaces

The inner-distance is very similar to the geodesic distance on
surfaces. The geodesic distance between any pair of points on
a surface is defined as the length of the shortest path on the
surface between them. One of our motivations comes from
Elad and Kimmel’s work [12] using geodesic distances for
3D surface comparison through multidimensional scaling
(MDS). Given a surface and sample points on it, the surface is
distorted using MDS so that the Euclidean distances between
the stretched sample points are as similar as possible to their
corresponding geodesic distances on the original surface.
Since the geodesic distance is invariant to bending, the
stretched surface forms a bending invariant signature of the
original surface.

Bending invariance is quite similar to the 2D articulation
invariance in which we are interested. However, the direct
counterpart of the geodesic distance in 2D does not work for
our purpose. Strictly speaking, the geodesic distance between
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Fig. 1. Three objects. The dashed lines denote shortest paths within the

shape boundary that connect landmark points.
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two points on the “surface” of a 2D shape is the distance
between them along the contour. If a simple (i.e., non-self-
intersecting), closed contour has length M, then, for any
point, p, and any d < M=2, there will be exactly two points q1,
q2 that are a distance d away from p, along the contour (see
Fig. 2 for examples). Hence, a histogram of the geodesic
distance to all points on the contour degenerates into
something trivial which does not capture shape. Unlike the
geodesic distance, the inner-distance measures the length of
the shortest path within the shape boundary instead of along
the shape contour (surface). We will show that the inner
distance is very informative and insensitive to articulation.

There are other works using geodesic distances in shape
descriptions. For example, Hamza and Krim [20] applied
geodesic distance using shape distributions ([35]) for 3D shape
classification. Zhao and Davis [48] used the color information
along the shortest path within a human silhouette. The
articulation invariance of shortest paths is also utilized by
them, but in the context of background subtraction. Ling and
Jacobs [28] proposed using the geodesic distance to achieve
deformation invariance in intensity images. A preliminary
version of this paper appeared as [29].

2.3 Shape Contexts for 2D Shapes

The shape context was introduced by Belongie et al. [5]. It
describes the relative spatial distribution (distance and
orientation) of landmark points around feature points.
Given n sample points x1; x2; . . . ; xn on a shape, the shape
context at point xi is defined as a histogram hi of the relative
coordinates of the remaining n� 1 points

hiðkÞ ¼ #fxj : j 6¼ i; xj � xi 2 binðkÞg; ð1Þ

where the bins uniformly divide the log-polar space. The
distance between two shape context histograms is defined
using the �2 statistic.

For shape comparison, Belongie et al. used a framework
combining shape context and thin-plate-splines [8] (SC+TPS).
Given the points on two shapes A and B, first the point
correspondences are found through a weighted bipartite
matching. Then, TPS is used iteratively to estimate the
transformation between them. After that, the similarity D
between A and B is measured as a weighted combination of
three parts

D ¼ aDac þDsc þ bDbe; ð2Þ

where Dac measures the appearance difference. Dbe mea-
sures the bending energy. The Dsc term, named the shape
context distance, measures the average distance between a
point on A and its most similar counterpart on B (in the
sense of (10)). a; b are weights (a ¼ 1:6, b ¼ 0:3 in [5]).

The shape context uses the Euclidean distance to
measure the spatial relation between landmark points. This
causes less discriminability for complex shapes with
articulations (e.g., Figs. 8 and 9). The inner-distance is a

natural way to solve this problem since it captures the
shape structure better than the Euclidean distance. We use
the inner-distance to extend the shape context for shape
matching. The advantages of the new descriptor are
strongly supported by experiments.

Belongie et al. showed that the SC+TPS is very effective for
shape matching tasks. Due to its simplicity and discrimin-
ability, the shape context has become quite popular recently.
Some examples can be found in [33], [43], [44], [47], [34], [26].
Among these works, [43] is most related to our approach.
Thayananthan et al. [43] suggested including a figural
continuity constraint for shape context matching via an
efficient dynamic programming scheme. In our approach,
we also include a similar constraint by assuming that contour
points are ordered and use dynamic programming for
matching the shape context at contour sample points. Notice
that, usually, dynamic programming encounters problems
with shapes with multiple boundaries (e.g., scissors with
holes). The inner-distance has no such problem since it only
requires landmark points on the outermost silhouette and
the shortest path can be computed taking account of holes.
This will be discussed in the following sections.

3 THE INNER-DISTANCE

In this section, we will first give the definition of the inner-
distance and discuss how to compute it. Then, the inner-
distance’s insensitivity to part articulations is proven. After
that, we will discuss its ability to capture part structures.

3.1 The Inner-Distance and Its Computation

First, we define a shape O as a connected and closed subset
of R2. Given a shape O and two points x; y 2 O, the inner-
distance between x,y, denoted as dðx; y;OÞ, is defined as the
length of the shortest path connecting x and y within O. One
example is shown in Fig. 3.

Note. 1) There may exist multiple shortest paths between
given points. However, for most cases, the path is unique.
In rare cases where there are multiple shortest paths, we
arbitrarily choose one. 2) We are interested in shapes
defined by their boundaries, hence only boundary points
are used as landmark points. In addition, we approximate
a shape with a polygon formed by their landmark points.

A natural way to compute the inner-distance is using
shortest path algorithms. It consists of two steps:

1. Build a graph with the sample points. First, each
sample point is treated as a node in the graph. Then, for
each pair of sample pointsp1 andp2, if the line segment
connecting p1 and p2 falls entirely within the object, an
edge between p1 and p2 is added to the graph with its
weight equal to the Euclidean distance kp1 � p2k. An
example is shown in Fig. 4.
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Fig. 2. Geodesic distances on 2D shapes. Using the geodesic distances

along the contours, the two shapes are indistinguishable. Fig. 3. Definition of the inner-distance. The dashed polyline shows the

shortest path between points x and y.
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Note. 1) Neighboring boundary points are always

connected. 2) The inner-distance reflects the exis-

tence of holes without using sample points from hole

boundaries,2 which allows dynamic programming

algorithms to be applied to shapes with holes.
2. Apply a shortest path algorithm to the graph. Many

standard algorithms [11] can be applied here, among
them Johnson or Floyd-Warshall’s algorithms have
Oðn3Þ complexity (n is the number of sample points).

In this paper, we are interested in the inner-distance
between all pairs of points. Now, we will show that this can be
computed with Oðn3Þ time complexity for n sample points.
First, it takes time OðnÞ to check whether a line segment
between two points is inside the given shape (by checking the
intersections between line p1p2 and all other boundary line
segments, with several extra tests). As a result, the complexity
of graph construction is ofOðn3Þ. After the graph is ready, the
all-pair shortest path algorithm has complexity of Oðn3Þ.
Therefore, the whole computation takes Oðn3Þ.

Note that, when O is convex, the inner-distance reduces
to the Euclidean distance. However, this is not always true
for nonconvex shapes (e.g., Fig. 1). This suggests that the
inner-distance is influenced by part structure to which the
concavity of contours is closely related [21], [13]. In the
following sections, we discuss this in detail.

3.2 Articulation Insensitivity of the Inner-Distance

As shown in Fig. 1, the inner-distance is insensitive to
articulation. Intuitively, this is true because an articulated
shape can be decomposed into rigid parts connected by
junctions. Accordingly, the shortest path between land-
mark points can be divided into segments within each
parts. We will first give a very general model for part
articulation and then formally prove articulation insensi-
tivity of the inner-distance.

3.2.1 A Model of Articulated Objects

Before discussing the articulation insensitivity of the inner-
distance, we need to provide a model of articulated objects.
Note that our method does not involve any part models, the
model here is only for the analysis of the properties of the
inner-distance. Intuitively, when a shape O is said to have
articulated parts, it means

. O can be decomposed into several parts, say,
O1; O2; . . . ; On, where n is the number of parts.
These parts are connected by junctions.

. The junctions between parts are very small com-
pared to the parts they connect.

. The articulation of O as a transformation is rigid
when limited to any part Oi, but can be nonrigid on
the junctions.

. The new shape O0 achieved from articulation of O is
again an articulated object and can articulate back toO.

Based on these intuitions, we define an articulated object

O � R2 of n parts together with an articulation f as:

O ¼
[n
i¼1

Oi

( )[ [
i6¼j
Jij

( )
;

where

. 8i; 1 � i � n, part Oi � R2 is connected and closed
and Oi

T
Oj ¼ ;, 8i 6¼ j, 1 � i; j � n.

. 8i 6¼ j; 1 � i; j � n, Jij � R2, connected and closed, is
the junction between Oi and Oj. If there is no
junction between Oi and Oj, then Jij ¼ ;. Otherwise,
Jij
T
Oi 6¼ ;, Jij

T
Oj 6¼ ;.

. diamðJijÞ � �, where diamðP Þ¼: maxx;y2Pfdðx; y;P Þg
is the diameter of a point set P � R2 in the sense of
the inner-distance. � � 0 is constant and very small
compared to the size of the articulated parts. A
special case is � ¼ 0, which means that all junctions
degenerate to single points and O is called an ideal
articulated object.

Fig. 5a shows an example articulated shape with three

parts and two junctions.
The articulation from an articulated object O to another

articulated object O0 is a one-to-one continuous mapping f

such that:

. O0 has the decompositionO0 ¼ f
Sn
i¼1 O

0
ig
S
f
S
i6¼j J

0
ijg.

Furthermore, O0i ¼ fðOiÞ, 8i; 1 � i � n are parts of O0

andJ 0ij ¼ fðJijÞ,8i 6¼ j; 1 � i; j � n are junctions inO0.
This preserves the topology between the articulated
parts. In particular, the deformed junctions still have a
diameter less than or equal to �.

. f is rigid (rotation and translation only) when
restricted to Oi, 8i; 1 � i � n. This means inner-
distances within each part will not change.

Notes. 1) In the above and following, we use the notation

fðP Þ¼: ffðxÞ : x 2 Pg for short. 2) It is obvious from the

above definitions that f�1 is an articulation that maps

O0 to O.
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2. The points along hole boundaries may still be needed for computing
the inner-distance, but not for building descriptors.

Fig. 4. Computation of the inner-distance. Left, the shape with the

sampled silhouette landmark points. Middle, the graph built using the

landmark points. Right, a detail of the right top of the graph. Note how

the inner-distance captures the holes.
Fig. 5. Articulated objects. (a) An articulated shape. (b) Overlapping

junctions (the five dark areas). (c) Ideal articulation.
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The above model of articulation is very general and
flexible. For example, there is no restriction on the shape of
the junctions. Junctions are even allowed to overlap each
other. Furthermore, the articulation f on the junctions are
not required to be smooth. Figs. 5b and 5c gives two more
examples of articulated shapes.

3.2.2 Articulation Insensitivity

We are interested in how the inner-distance varies under
articulation. From previous paragraphs, we know that
changes of the inner-distance are due to junction deforma-
tions. Intuitively, this means the change is very small
compared to the size of parts. Since most pairs of points have
inner-distances comparable to the sizes of parts, the relative
change of the inner-distances during articulation are small.
This roughly explains why the inner-distances are articula-
tion insensitive.

We will use following notations: 1) �ðx1; x2;P Þ denotes a
shortest path from x1 2 P to x2 2 P for a closed and
connected point set P � R2 (so dðx1; x2;P Þ is the length of
�ðx1; x2;P Þ). 2) 0 indicates the image of a point or a point set
under f , e.g., P 0¼: fðP Þ for point set P , p0¼: fðpÞ for a point p.
3) “[” and “]” denote the concatenation of paths.

Let us first point out two facts about the inner-distance

within a part or crossing a junction. Both facts are direct

results from the definitions in Section 3.2.1.

dðx; y;OiÞ ¼ dðx0; y0;O0iÞ 8x; y2Oi; 1�i�n; ð3Þ

jdðx; y;OÞ � dðx0; y0;O0Þj � �; 8x; y 2 Jij
8i 6¼j; 1�i; j�n; Jij 6¼ ;:

ð4Þ

Note that (4) does not require the shortest path between x; y
to lie within the junction Jij. These two facts describe the
change of the inner-distances of restricted point pairs. For
the general case of x; y 2 O, we have the following theorem:

Theorem. Let O be an articulated object and f be an articulation
of O as defined above. 8x; y 2 O, suppose the shortest path
�ðx; y;OÞ goes through m different junctions in O and
�ðx0; y0;O0Þ goes through m0 different junctions in O0, then

jdðx; y;OÞ � dðx0; y0;O0Þj � maxfm;m0g�: ð5Þ

Proof. The proof uses the intuition mentioned above. First,
we decompose �ðx; y;OÞ into segments. Each segment is
either within a part or across a junction. Then, applying
(3) and (4) to each segment leads to the theorem.

First, �ðx; y;OÞ is decomposed into l segments:

�ðx; y;OÞ ¼ �ðp0; p1;R1Þ;�ðp1; p2;R2Þ; . . . ;�ðpl�1; pl;RlÞ½ �

using point sequence p0; p1; . . . ; pl and regions R1; . . . ; Rl

via the steps using Algorithm 1.

Algorithm 1 Decompose �ðx; y;OÞ
p0  x, i 0
while pi 6¼ y do {/*find piþ1*/}
i iþ 1
Ri  the region (a part or a junction) �ðx; y;OÞ enters

after pi�1

if Ri ¼ Ok for some k (Ri is a part) then {/*enter a
part*}

Set pi as a point in Ok such that
1) �ðpi�1; pi;OkÞ � �ðx; y;OÞ

2) �ðx; y;OÞ enters a new region (a part or a junction)
after pi or pi ¼ y

else {/*Ri ¼ Jrs for some r; s (Ri is a junction), enter a
junction*/}

Set pi as the point in Jrs
T

�ðx; y;OÞ such that
�ðx; y;OÞ never reenters Jrs after pi.

Ri  the union of all the parts and junctions
�ðpi�1; pi;OÞ passes through (note Jrs � Ri).

end if
end while
l i

An example of this decomposition is shown in Fig. 6a.
With this decomposition, dðx; y;OÞ can be written as:

dðx; y;OÞ ¼
X

1�i�l
dðpi�1; pi;RiÞ:

Suppose m1 of the segments cross junctions (i.e.,
segments not contained in any single part), then,
obviously, m1 � m.

In O0, we construct a path from x0 to y0 corresponding
to �ðx; y;OÞ as follows (e.g., Fig. 6b):

eCðx0; y0;O0Þ¼½�ðp00; p01;R01Þ;�ðp01; p02;R02Þ; . . . ;�ðp0l�1; p
0
l;R

0
lÞ�:

Note that eCðx0; y0;O0Þ is not necessarily the shortest
path in O0. Denote edðx0; y0;O0Þ as the length ofeCðx0; y0;O0Þ, it has the following property due to (3), (4):

jdðx; y;OÞ � edðx0; y0;O0Þj � m1� � m�: ð6Þ

On the other hand, since O can be articulated from O0

through f�1, we can construct eCðx; y;OÞ from �ðx0; y0;O0Þ
in the same way we constructed eCðx0; y0;O0Þ from
�ðx; y;OÞ. Then, similarly to (6), there is

jdðx0; y0;O0Þ � edðx; y;OÞj � m0�: ð7Þ

Combining (6) and (7),

dðx; y;OÞ �m0� � edðx; y;OÞ �m0� � dðx0; y0;O0Þ
� edðx0; y0;O0Þ � dðx; y;OÞ þm�:

This implies (5). tu
From (5), we can make two remarks concerning changes

of inner-distances under articulation:

1. The inner-distance is strictly invariant for ideal
articulated objects. This is obvious since � ¼ 0 for
ideal articulations.

2. Since � is very small, for most pairs of x; y, the relative
change of inner-distance is very small. This means the
inner-distance is insensitive to articulations.
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Fig. 6. (a) Decomposition of �ðx; y;OÞ (the dashed line) with

x ¼ p0; p1; p2; p3 ¼ y. Note that a segment can go through a junction

more than once (e.g., p1p2). (b) Construction of eCðx0; y0;O0Þ in O0 (the

dashed line). Note that eCðx0; y0;O0Þ is not the shortest path.
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We further clarify several issues. First, the proof depends

on the size limitation of junctions. The intuition is that a
junction should have a relatively smaller size compared to

parts; otherwise, it is more like a part itself. A more precise
part-junction definition may provide a tighter upper bound

but sacrifice some generality. The definition also captures our
intuition about what distinguishes articulation from defor-

mation. Second, the part-junction model is not actually usedat
all when applying the inner-distance. In fact, one advantage of

using the inner-distance is that it implicitly captures part
structure, whose definition is still not clear in general.

3.3 Inner-Distances and Part Structures

In addition to articulation insensitivity, we believe that the

inner-distance captures part structures better than the
Euclidean distance. This is hard to prove because the
definition of part structure remains unclear. For example,

Basri et al. [4] gave a shape of a shoe (Fig. 7) which has no
clear part decomposition, although it feels like it has more

than one part.
Instead of giving a rigorous proof, we show how the inner-

distance captures part structure with examples and experi-
ments. Figs. 1, 8, and 12 show examples where the inner-

distance distinguishes shapes with parts while the Euclidean
distance runs into trouble because the sample points on the

shape have the same spatial distributions. For example, the
original shape context [5] may fail on these shapes. One may

argue that the Euclidean distance will also work on these
examples with an increased number of landmark points. This

argument has several practical problems. First, the computa-
tional cost will be increased, usually in a quadratic order or
higher. Second, no matter how many points are used, there

can always be finer structures. Third, as shown in Fig. 9, for
some shapes this strategy will not work.

During retrieval experiments using several shape data-
bases, the inner-distance-based descriptors all achieve

excellent performance. Through observation we have found
that some databases (e.g., MPEG7) are difficult for retrieval

mainly due to the complex part structures in their shapes,
though they have little articulation. These experiments

show that the inner-distance is effective at capturing part
structures (see Section 7.2 and Figs. 12 and 18 for details).

Aside from part structures, examples in Fig. 9 show cases

where the inner-distance can better capture some shapes

without parts. We expect further studies on the relationship

between inner-distances and shape in the future.

4 ARTICULATION INVARIANT SIGNATURES

To build shape descriptors with the inner-distance is
straightforward. Theoretically, it can be used to replace other
distance measures (e.g., the Euclidean distance) in any
existing shape descriptors. In this section, the inner-distance
is used to build articulation invariant signatures for 2D shapes
using multidimensional scaling (MDS) similar to [12]. In the
next section, we will show how to use the inner-distance to
extend the shape context for shape matching.

Given sample points P¼: fpigni¼1 on a shape O and the

inner-distances fdijgni;j¼1 between them, MDS finds the

transformed points Q¼: fqigni¼1 such that the Euclidean

distances feijðQÞ ¼ kqi � qjkgni;j¼1 minimize the stress SðQÞ
defined as:

SðQÞ ¼
P

i<j wijðdij � eijðQÞÞ
2P

i<j d
2
ij

; ð8Þ

where wij are weights. In our experiment, we use the least
squares MDS with wij ¼ 1. The stress can be minimized
using the SAMCOF (Scaling by Maximizing a Convex
Function) algorithm [9]. SAMCOF is an iterative algorithm
that keeps decreasing the objective function, i.e., the stress
(8). The details can be find in Elad and Kimmel’s paper [12].

Fig. 10 shows two examples of the articulation invariant
signatures computed by the above approach. It can be seen
that, although the global shape of the two original objects
are quite different due to the articulation, their signatures
are very similar to each other. More examples of the
articulation invariant signatures can be seen in Fig. 15.

It is attractive to use the articulation invariant signature
for classifying articulated shapes. In our experiments, we
combine it with the shape context. The method contains
three steps: 1) use the inner-distance and MDS to get the
articulation invariant signatures, 2) build the shape context
on the signatures, and 3) use dynamic programming for
shape context matching. The third step is described in detail
in the next section. We call this approach MDS+SC+DP. The
experimental results show significant improvement com-
pared to the shape context on the original shapes.
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Fig. 7. A shape of a shoe that has no clear part decomposition.

Fig. 8. With the same sample points, the distributions of Euclidean

distances between all pairs of points are indistinguishable for the four

shapes, while the distributions of the inner-distances are quite different.

Fig. 9. With about the same number of sample points, the four shapes
are virtually indistinguishable using distribution of Euclidean distances,
as in Fig. 8. However, their distributions of the inner-distances are quite
different except for the first two shapes. Note: 1) None of the shapes has
(explicit) parts. 2) More sample points will not affect the above
statement.

Fig. 10. Articulation invariant signatures. (a) and (c) show two shapes

related by articulation. (b) and (d) show their signatures.
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5 INNER-DISTANCE SHAPE CONTEXT: MATCHING

AND RETRIEVAL

5.1 Inner-Distance Shape Context (IDSC)

To extend the shape context defined in (1), we redefine the
bins with the inner-distance. The Euclidean distance is
directly replaced by the inner-distance. The relative orienta-
tion between two points can be defined as the tangential
direction at the starting point of the shortest path connecting
them. However, this tangential direction is sensitive to
articulation. Fortunately, for a boundary point p and its
shortest path �ðp; q;OÞ to another point q, the angle between
the contour tangent at p and the direction of �ðp; q;OÞ at p is
insensitive to articulation (invariant to ideal articulation). We
call this angle the inner-angle (e.g., see Fig. 11) and denote it as
�ðp; q;OÞ. The inner-angle is used for the orientation bins. This
is similar to using the local coordinate system suggested in [5]
to get rotation invariance. In practice, the shape boundary
may be distorted by noise that reduces the stability of the
inner-angle. To deal with this problem, we smooth the
contour using a small neighborhood before computing the
inner-angle.

Fig. 12 shows examples of the shape context computed
by the two different methods. It is clear that SC is similar for
all three shapes, while IDSC is only similar for the beetles.
From this figure, we can see that the inner-distance is better
at capturing parts than SC.

The inner-angle is just a byproduct of the shortest path
algorithms and does not affect the complexity. Once the
inner-distances and orientations between all pair of points
are ready, it takes Oðn2Þ time to compute the histogram (1).

5.2 Shape Matching through Dynamic
Programming

The contour matching problem is formulated as follows:
Given two shapes A and B, describe them by point
sequences on their contour, say, p1p2 . . . pn for A with
n points and q1q2 . . . qm for B with m points. Without loss of
generality, assume n � m. The matching � from A to B is a
mapping from 1; 2; . . . ; n to 0; 1; 2; . . . ;m, where pi is

matched to q�ðiÞ if �ðiÞ 6¼ 0 and otherwise left unmatched.

� should minimize the match cost Hð�Þ defined as

Cð�Þ ¼
X

1�i�n
cði; �ðiÞÞ; ð9Þ

where cði; 0Þ ¼ � is the penalty for leaving pi unmatched,

and for 1 � j � m, cði; jÞ is the cost of matching pi to qj. This

is measured using the �2 statistic as in [5]

cði; jÞ � 1

2

X
1�k�K

½hA;iðkÞ � hB;jðkÞ�2

hA;iðkÞ þ hB;jðkÞ
: ð10Þ

Here, hA;i and hB;j are the shape context histograms of pi
and qj, respectively, and K is the number of histogram bins.

Since the contours provide orderings for the point
sequences p1p2 . . . pn and q1q2 . . . qm, it is natural to restrict
the matching � with this order. To this end, we use dynamic
programming (DP) to solve the matching problem. DP is
widely used for contour matching. Detailed examples can
be found in [43], [4], [36]. We use the standard DP method
[11] with the cost functions defined as (9) and (10).

By default, the above method assumes the two contours
are already aligned at their start and end points. Without this
assumption, one simple solution is to try different alignments
at all points on the first contour and choose the best one. The
problem with this solution is that it raises the matching
complexity from Oðn2Þ to Oðn3Þ. Fortunately, for the
comparison problem, it is often sufficient to try aligning a
fixed number of points, say, k points. Usually, k is much
smaller than m and n, this is because shapes can be first
rotated according to their moments. According to our
experience, for n;m ¼ 100, k ¼ 4, or 8 is good enough and
larger k does not demonstrate significant improvement.
Therefore, the complexity is still Oðkn2Þ ¼ Oðn2Þ.

Bipartite graph matching is used in [5] to find the point
correspondence �. Bipartite matching is more general since
it minimizes the matching cost (9) without additional
constraints. For example, it works when there is no ordering
constraint on the sample points (while DP is not applicable).
For sequenced points along silhouettes, however, DP is
more efficient and accurate since it uses the ordering
information provided by shape contours.

5.3 Shape Distances

Once the matching is found, we use the matching costCð�Þ as
in (9) to measure the similarity between shapes. One thing to
mention is that dynamic programming is also suitable for
shape context. In the following, we use IDSC+DP to denote
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Fig. 11. The inner-angle �ðp; q;OÞ between two boundary points.

Fig. 12. Shape context (SC) and inner-distance shape context (IDSC).
The top row shows three objects from the MPEG7 shape database
(Section 7.2), with two marked points p; q on each shape. The next rows
show (from top to bottom), the SC at p, the IDSC at p, the SC at q, the
IDSC at q. Both the SC and the IDSC use local relative frames (i.e.,
aligned to the tangent). In the histograms, the x axis denotes the
orientation bins and the y axis denotes log distance bins.

Fig. 13. Shapes of three leaves ((a), (b), and (c)) are not enough to

distinguish them. Their texture ((d), (e), and (f), respectively) apparently

helps.
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the method of using dynamic programming matching with
the IDSC and use SC+DP for the similar method with the SC.

In addition to the excellent performance demonstrated in
the experiments, the IDSC+DP framework is simpler than the
SC+TPS framework (2) [5]. First, besides the size of shape
context bins, IDSC+DP has only two parameters to tune:
1) The penalty � for a point with no matching, usually set to
0.3, and 2) the number of start points k for different
alignments during the DP matching, usually set to 4 or 8.
Second, IDSC+DP is easy to implement since it does not
require the appearance and transformation model as well
as the iteration and outlier control. Furthermore, the
DP matching is faster than bipartite matching, which is
important for retrieval in large shape databases.

The time complexity of the IDSC+DP consists of three
parts. First, the computation of inner-distances can be
achieved inOðn3Þwith Johnson or Floyd-Warshall’s shortest
path algorithms, where n is the number of sample points.
Second, the construction of the IDSC histogram takes Oðn2Þ.
Third, the DP matching costs Oðn2Þ and only this part is
required for all pairs of shapes, which is very important for
retrieval tasks with large image databases. In our experiment
using partly optimized Matlab code on a regular Pentium IV
2.8G PC, a single comparison of two shapes with n ¼ 100
takes about 0.31 second.

6 SHORTEST PATH TEXTURE CONTEXT

In real applications, the shape information is often not
enough for object recognition tasks. On the one hand,
shapes from different classes sometimes are more similar
than those from the same class (e.g., Fig. 13). On the other
hand, shapes are often damaged due to occlusion and self-
overlapping (some examples can be found in Fig. 24).
Naturally, the combination of texture and shape informa-
tion is desirable for this problem. In [5], the appearance
information is included into the SC+TPS framework by
considering appearance around landmark points. In this
section, we will introduce a new descriptor that considers
the texture information inside the whole shape.

In previous sections, the inner-distance is shown to be
articulation insensitive due to the fact that the shortest paths
within shape boundaries are robust to articulation. Therefore,
the texture information along these paths provides a natural
articulation insensitive texture description. Note that this is
true only when the paths are robust. In this section, we use
local intensity gradient orientations to capture texture
information because of their robustness and efficiency. To
gain articulation invariance, the angles between intensity
gradient directions and shortest path directions are used. In
the following, we call these angles relative orientations. Given
shape O and two points p; v on it, we use �ðp; v;OÞ to denote
the relative orientation with respect to the shortest path
�ðp; v;OÞ. An example is shown in Fig. 14.

Based on the above idea, we propose the shortest path
texture context (SPTC) as a combined shape and texture
descriptor. SPTC is an extension of the IDSC in that it
measures the distributions of (weighted) relative orientations
along shortest paths instead of the joint distributions of inner-
distance and inner-angle distributions of landmark points. In
our application, the relative orientations are weighted by
gradient magnitudes when building into SPTC. For texture
undergoing large nonuniform illumination change, it might
be better to use nonweighted relative orientations.

Given n landmark points x1; x2; . . . ; xn sampled from the
boundary of shape O, the SPTC for each xi is a three-
dimensional histogram hi (we abuse notation to use hi again
for the histograms). Similarly to IDSC, SPTC uses the inner-
distance and the inner-angle as the first two dimensions. The
third dimension of SPTC is the (weighted) relative orientation
that takes into account the texture information along shortest
paths. To build hi, for each xj, j 6¼ i, a normalized histogram
of relative orientation along the shortest path �ðxi; xj;OÞ is
added into the relative orientation bin located at the inner-
distance and inner-angle bin determined byxj. The algorithm
is described in Algorithm 2. Note that when the number of
relative orientation bins nr ¼ 1, SPTC reduces to IDSC.

Algorithm 2 Shortest path texture context hi at landmark

point xi
hi  3D matrix with zero entries everywhere

for j ¼ 1 to n, j 6¼ i do

�ðxi; xj;OÞ  shortest path from xi to xj
ĥ 1D weighted histogram of the relative

orientations along �ðxi; xj;OÞ
ĥ ĥ=kĥk1 {/* Normalize ĥ, where k:k1 is the L1

norm */}

did  the inner-distance bin index computed from

dðxi; xj;OÞ
�id  the inner-angle bin index computed from

�ðxi; xj;OÞ
for �id ¼ 1 to nr do { /* nr is the number of relative

orientation bins */}

hiðdid; �id; �idÞ  hiðdid; �id; �idÞ þ ĥð�idÞ
end for

end for

hi  hi=jhij {/* Normalize hi */}

A similar idea of using “relative orientation” is used by
Lazebnik et al. [25] for rotation invariant texture description.
Shape context had also been extended for texture description
by including intensity gradient orientation (e.g., [31]). SPTC is
different from these methods in three ways. First, SPTC
combines texture information and global shape information
while the above methods work for local image patches.
Second, the above methods sample the orientations at a large
number of pixels inside a patch, which is too expensive for our
task without utilizing shortest paths. Third, none of the
previous methods is articulation invariant. Another related
work by Zhao and Davis [48] used the color information along
the shortest path for background subtraction. Instead of color
information, we use gradient orientation, which is more
robust to lighting change [10], which is very important for
classification tasks. In the next section, SPTC is tested in two
leaf image databases and excellent performance is observed.
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Fig. 14. Relative orientation �ðp; v;OÞ at point v. The arrow points to
local intensity gradient direction.
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7 EXPERIMENTS

This section describes the experiments testing proposed
approaches. First, we test the inner-distance’s articulation
insensitivity with an articulated shape data set. After that,
the inner-distance is tested in comparison with other state-
of-the-art approaches on several widely tested shape data
sets, including the MPEG7 CE-Shape-1 shapes, silhouette
Kimia’s silhouettes [40], [39], ETH-80 [26]. Then, the
proposed approach is tested on two foliage image data
sets, a Swedish leaf data set [42] and a Smithsonian leaf data
set. These experiments show how the inner-distance works
in real applications and how the SPTC performs on shapes
with texture. Finally, we will show the potential use of the
IDSC on human motion analysis.

Now, we describe the parameters used in the experiments.
We use n to denote the number of landmark points (on the
outer contour of shapes). Landmark points are sampled
uniformly (as in [5]) to avoid bias.n is chosen according to the
task. In general, larger n will produce greater accuracy with
less efficiency. For the size of histograms, nd, n�, and nr are
used for the number of inner-distance bins, the number of
inner-angle bins, and the number of relative orientation bins,
respectively. A typical setting for the bin number is nd ¼ 5,
n� ¼ 12, and nr ¼ 8. In our experiments, we sometimes use
nd ¼ 8 to get better results. For dynamic programming, k
denotes the number of different starting points for alignment
(uniformly chosen from landmark points). The choice of k
was discussed in Section 5.3. In general, a larger k increases
the accuracy. However, in practice, we found that k ¼ 4� 8
usually gives satisfactory results. For example, k ¼ 8 is used
for the MPEG7 data set. However, we did notice that larger k
can improve the performance further, e.g., k ¼ 16 is used for
the ETH-80 data set that involves wildly varied rotations. We
did not rotate shapes according to their moments, which
might be helpful for tasks involving a large variation in
orientations. The penalty � for one occlusion is always set to
be 0.3 (our experiments show that different � in the range of
[0.25, 0.5] do not affect the results too much). In all the

experiments, the parameters for MDS+SC+DP are the same as
in IDSC+DP. Furthermore, for data sets that have no
previously reported shape context matching results, we run
the SC+DP for comparison with the same parameters as
IDSC+DP.

7.1 Articulated Database

To show the articulation insensitivity of the inner-distance,
we apply the proposed articulation invariant signature and
the IDSC+DP approach to an articulated shape data set we
collected. The data set contains 40 images from eight
objects. Each object has five images articulated to different
degrees (see Fig. 15). The data set is very challenging
because of the similarity between different objects (espe-
cially the scissors). The holes of the scissors make the
problem even more difficult.

The parameters in the experiment are: n ¼ 200, nd ¼ 5,
n� ¼ 12. Since all the objects are at the same orientation, we
align the contours by forcing them to start from the bottom-
left points and then set k ¼ 1 for DP matching. The
articulation invariant signatures of the shapes are computed
and shown in Fig. 15.

To evaluate the recognition result for each image, the four
most similar matches are chosen from other images in the
data set. The retrieval result is summarized as the number of
first, second, third, and fourth most similar matches that
come from the correct object. Table 1 shows the retrieval
results. It demonstrates that both the articulation invariant
signature and the IDSC help to improve recognition a lot. This
verifies our claim that the inner-distance is very effective for
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Fig. 15. (a) Articulated shape database. This data set contains 40 images from eight objects with articulation. Each column contains five images from

the same object. (b) MDS of the articulated shape database using the inner-distances.

TABLE 1
Retrieval Result on the Articulate Data Set

Fig. 16. Left: SC+DP on the articulated shape database. The top four
retrieval results of 20 images are shown here. The top row shows the
querying images. Row two to row five show the top one to top four retrieval
results, respectively. The numbers below the results are the matching
scores. Incorrect hits are circled in dotted lines. Right: IDSC+DP on the
articulated shape database, same notations as for SC+DP.

Fig. 17. Typical shape images from the MPEG7 CE-Shape-1, one image

from each class.
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objects with articulated parts. Fig. 16 shows some detailed
retrieval results for some of the images. The experiment also
shows that IDSC works better than MDS for the articulated
shapes. One reason is that the MDS may cause loss of
information since it uses the Euclidean distance to approximate
the inner-distance. To give an intuition of the difficulty of the
database, a baseline algorithm using L2 distance was also
tested.

7.2 MPEG7 Shape Database

The widely tested MPEG7 CE-Shape-1 [24] database
consists of 1400 silhouette images from 70 classes. Each
class has 20 different shapes (see Fig. 17 for some typical
images). The recognition rate is measured by the so-called
Bullseye test: For every image in the database, it is matched
with all other images and the top 40 most similar candidates

are counted. At most, 20 of the 40 candidates are correct
hits. The score of the test is the ratio of the number of correct

hits of all images to the highest possible number of hits
(which is 20	 1; 400).

The parameters in our experiment are: n ¼ 100 (300 were

used in [5]), nd ¼ 8, n� ¼ 12, and k ¼ 8. To handle mirrored
shapes, we compare two point sequences (corresponding to

shapes) with the original order and reversed order. Table 2
lists reported results from different algorithms. It shows

that our algorithms outperform all the alternatives. The
speed of our algorithm is in the same range as those of

shape contexts [5], curve edit distance [38], and generative
model [44]. Again, we observed that IDSC performs a little

better than the articulation invariant signatures.
Note that, unlike the original SC+TPS framework used in

[5], the appearance and bending information are not

included in our experiment. The reason is twofold: 1) We
want to focus more on the inner-distance itself and 2) this

also makes our framework easy to use. In addition, the
dynamic programming scheme is used to take advantage of

the ordering information of the landmark points and the
local coordinate framework (along the tangential of land-

mark points) are used to achieve rotation invariance.
To help understand this performance, we did two other

experiments in the same setting where the only difference is

the descriptors used: one uses SC another IDSC. The
parameters in both experiments are: 64 sample points on

each silhouette, eight distance bins, and eight orientation
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TABLE 2
Retrieval Rate (Bullseye) of Different Methods for the MPEG7 CE-Shape-1

Fig. 18. Two retrieval examples for comparing SC and IDSC on the
MPEG7 data set. The left column shows two shapes to be retrieved: a
beetle and an octopus. The four right rows show the top one to nine
matches, from top to bottom: SC and IDSC for the beetle, SC and IDSC
for the octopus.

Fig. 19. (a) Kimia’s data set 1 [40], 25 instances from six categories.

(b) Kimia’s data set 2 [39], 99 instances from nine categories.

TABLE 3
Retrieval Result on Kimia Data Set 1 [40] (Fig. 19a)

TABLE 4
Retrieval Result on Kimia Data Set 2 [39] (Fig. 19b)

Fig. 20. ETH-80 image set [26]. This data set contains 80 objects from
eight classes, with 41 images of each object obtained from different
viewpoints. Note: The original images are in color. See http://
www.mis.informatik.tu-darmstadt.de/Research/Projects/categorization/
eth80-db.html for detail.
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bins. To avoid the matching effect, shapes are compared
using the simple shape context distance measureDsc instead
of DP (see Section 2.3 or [5]). The Bullseye score with SC is
64.59 percent, while IDSC gets a higher score of 68.83 percent.
Fig. 18 shows some retrieval results, where we see that the
IDSC is good for objects with parts while the SC favors global
similarities. Examination of the MPEG7 data set shows that
the complexity of shapes are mainly due to the part structures
but not articulations, so the good performance of IDSC shows
that the inner-distance is more effective at capturing part
structures.

7.3 The Kimia Database

IDSC+DP and MDS+SC+DP are tested on two shape
databases provided by Kimia’s group [40], [39]. The first
database [40] contains 25 images from 6 categories (Fig. 19a).
It has been tested by [5], [40], [16]. We use parameters
n ¼ 100, nd ¼ 5, n� ¼ 12, and k ¼ 4. The retrieval result is
summarized as the number of first, second, and third closest
matches that fall into the correct category. The results are
listed in Table 3. It shows that IDSC slightly outperforms the
other three reported methods and the MDS-based approach.

The second database [39] contains 99 images from nine
categories (Fig. 19b) and has been tested by [39], [44]. We use
parameters n ¼ 300, nd ¼ 8, n� ¼ 12, and k ¼ 4. Similar to
results described above, the retrieval result is summarized as
the number of top 1 to top 10 closest matches (the best possible
result for each of them is 99). Table 4 lists the numbers of
correct matches of several methods, which shows that our
approaches performs comparably to the best approaches.
One interesting observation is that the IDSC performs very
similarly to the shock edit. This suggests a close relation
between them as mentioned in the related work section.

7.4 The ETH-80 Image Set

The ETH-80 database [26] (see Fig. 20) contains 80 objects from
eight categories. For each object, there are 41 images from
differentviewpoints.So, thedatabase contains3,280images in

total. To analyze appearance and contour-based methods for

object categorization, [26] first applied seven different

approaches (including SC+DP), each with a single cue (either

appearance or shape). Decision trees were then used to

combine those approaches to get better performance. The test

mode is leave-one-object-out cross-validation. Specifically,

for each image in the database, it is compared to all the images

fromthe other79 objects. Therecognition rate is averagedover

all the objects.
We tested the MDS+SC+DP and the IDSC+DP on this

data set with parameters: n ¼ 128, nd ¼ 8, n� ¼ 12, and

k ¼ 16. Since only shape information is used, we compared

the result with the seven single cue approaches in [26]. The

recognition results are listed in Table 5. It shows that the

IDSC works the best among all the single cue approaches.

7.5 Foliage Image Retrieval

In this section, we will demonstrate the application of the

inner-distance on a real and challenging application, foliage

image retrieval. Leaf images are very challenging for retrieval

tasks due to their high between class similarity and large

inner class deformations. Furthermore, occlusion and self-

folding often damage leaf shape. In addition, some species
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TABLE 5
Recognition Rates of Single Cue Approaches on the ETH-80 Database [26]

All experiments results are from [26] except for MDS+SC+DP and IDSC+DP.

Fig. 21. Typical images from the Swedish leaf data set, one image per

species. Note that some species are quite similar, e.g., the first, third,

and ninth species.

Fig. 22. Smithsonian data set, containing 343 leaf images from

93 species. One typical image from each species is shown.

TABLE 6
Recognition Rates on the Swedish Leaf Data Set

Note that MDS+SC+DP and SPTC have the same rates.
Fig. 23. Recognition results on the Smithsonian data set. The curves

show the recognition rate among the top N matched leaves.
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have very similar shape but different texture, which therefore
makes the combination of shape and texture desirable.

7.5.1 Swedish Leaf Database

The Swedish leaf data set comes from a leaf classification
project at Linköping University and the Swedish Museum of
Natural History [42]. The data set contains isolated leaves
from 15 different Swedish tree species, with 75 leaves per
species. Fig. 21 shows some representative examples. Some
preliminary classification work has been done in [42] by
combining simple features like moments, area, and curva-
ture, etc. We tested with Fourier descriptors, SC+DP,
MDS+SC+DP, IDSC+DP, and SPTC+DP with parameters
n ¼ 128, nd ¼ 8, n� ¼ 12, nr ¼ 8, and k ¼ 1. Each species
contains 25 training samples and 50 testing samples. The
recognition results with 1-nearest-neighbor are summarized
in Table 6. Notice that, unlike other experiments, the
articulation invariant signature works a little better than
IDSC on the leaf images. One possible explanation is that, as a
real image data set, the inner-angle for leaves are less robust
due to boundary noise. Also, notice that SPTC improves IDSC
as we had expected.

7.5.2 Smithsonian Isolated Leaf Database

This data set comes from (see Fig. 22) the Smithsonian
project [1] whose aimed is to “build a digital collection of
the Smithsonian’s collection of specimens and provide
means to access it with text and photos of plants.” We
designed an Electronic Field Guide image retrieval system
that allows online visual searching. For example, during a
filed test, a botanist can input a picture of an unknown leaf
to the system and get the most visually similar leaves in a
database. A detailed description of the system can be found
in [2]. The task is very challenging because it requires
querying from a database containing more than 100 species
and real-time performance requires an efficient algorithm.
In addition, the pictures taken in the filed are vulnerable to
lighting changes and the leaves may not be flattened well.

In this paper, we test proposed approaches on a
representative subset of the leaf image database in the
system.3 This data set contains 343 leaves from 93 species
(the number of leaves from different species varies). In the
experiment, 187 of them are used as the training set and 156
as the testing set. Note that there are only two instances per
class in the training set on average. The retrieval perfor-
mance is evaluated using performance curves which show
the recognition rate among the top N leaves, where N
varies from 1 to 16.

For the efficiency reasons mentioned above, only 64 con-
tour points are used (i.e., n ¼ 64). The similarity between
leaves is measured by the shape context distance Dsc (see
Section 2.3 or [5]4) because it is faster than DP. Other
parameters used in the experiment are nd ¼ 5, n� ¼ 12, and
nr ¼ 8. Note that k is not needed because DP is not used here.
The performance is plotted in Fig. 23. It shows that SPTC
works significantly better than other methods. Fig. 24 gives
some detailed query results of SPTC and IDSC from which we
can see how SPTC improves retrieval result by also consider-
ing texture information.

7.6 Human Body Matching

In this experiment, we demonstrate the potential for using
the proposed method on human body matching, which is
important in human motion analysis. The data set is a
human motion sequence from a stationary camera, collected
at the Keck Lab at the University of Maryland. Silhouettes
are extracted with background subtraction. Our task is to
match the silhouettes from different frames. For adjacent
frames, IDSC+DP performs very well (e.g., the left of
Fig. 25). For two silhouettes separated by 20 frames, the
articulation turns out to be large and the matching becomes
challenging. The IDSC+DP also gives promising results
(e.g., the right part in Fig. 25). An application of the inner-
distance to human motion analysis can be found in [27].

8 CONCLUSION AND DISCUSSION

In this paper, we proposed using the inner-distance to build
shape descriptors. We show that the inner-distance is
articulation insensitive and is good for complicated shapes
with part structures. Then, the inner-distance is used to build
better shape representations. We first build articulation
invariant signatures for 2D shapes by combining the inner-
distance and MDS. After that, we extended the shape context
with the inner-distance to form a new descriptor and
designed a dynamic programming based method for shape
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Fig. 25. Human silhouettes matching. Left: Between adjacent frames.

Right: Silhouettes separated by 20 frames, note that the hands are

correctly matched. Only half of the matched pairs are shown for

illustration.

Fig. 24. Three retrieval examples for IDSC and SPTC. The left column shows the query images. For each query image, the top four retrieving results

are shown to its right, using IDSC and SPTC, respectively. The circled images come from the same species as the query image.

3. http://www.cs.umd.edu/~hbling/Research/data/SI-93.zip.
4. It is based on a greedy matching and should not be confused with the

bipartite matching-based approach.
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matching and comparison. Then, the descriptor is extended

to capture texture information in a natural and efficient way.

In retrieval experiments on several data sets, our approach

demonstrated excellent retrieval results in comparison with

several other algorithms. In addition, the approach is tested

on sequential human silhouettes. Good matching results

show the potential for using inner-distances in tracking

problems. From these experiments, we are confident that the

inner-distance works for shapes with complex part structure,

particularly with large articulation. In addition, it is worth

noting that the technique had been applied for a real

electronic field guide system [2].
There are several interesting issues about the inner-

distance we want to address here. First, to compute the

inner-distance the shape boundary is assumed to be known.

This limits the approach to applications where the segmenta-

tion is available. Second, the inner-distance is sensitive to

shape topology which sometimes causes problems. For

example, occlusion may cause the topology of shapes to

change. In addition, the inner-distance may not be proper for

shapes involving little part structure and large deformation

(no articulation).
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