Shape Classification Using the Inner-Distance

Haibin Ling, Student Member, IEEE, and David W. Jacobs, Member, IEEE

Abstract—Part structure and articulation are of fundamental importance in computer and human vision. We propose using the innerdistance to build shape descriptors that are robust to articulation and capture part structure. The inner-distance is defined as the length of the shortest path between landmark points within the shape silhouette. We show that it is articulation insensitive and more effective at capturing part structures than the Euclidean distance. This suggests that the inner-distance can be used as a replacement for the Euclidean distance to build more accurate descriptors for complex shapes, especially for those with articulated parts. In addition, texture information along the shortest path can be used to further improve shape classification. With this idea, we propose three approaches to using the inner-distance. The first method combines the inner-distance and multidimensional scaling (MDS) to build articulation invariant signatures for articulated shapes. The second method uses the inner-distance to build a new shape descriptor based on shape contexts. The third one extends the second one by considering the texture information along shortest paths. The proposed approaches have been tested on a variety of shape databases, including an articulated shape data set, MPEG7 CE-Shape-1, Kimia silhouettes, the ETH-80 data set, two leaf data sets, and a human motion silhouette data set. In all the experiments, our methods demonstrate effective performance compared with other algorithms.

Index Terms—Computer vision, invariants, object recognition, shape, shape distance, texture, articulation.

1 INTRODUCTION

PART structure plays a very important role in classifying complex shapes in both human vision and computer vision [21], [6], [23], etc. However, capturing part structure is not a trivial task, especially considering articulations, which are nonlinear transformations between shapes. To make things worse, sometimes shapes can have ambiguous parts (e.g., [4]). Unlike many previous methods that deal with part structure explicitly, we propose an implicit approach to this task.

In this paper, we introduce the *inner-distance*, defined as the length of the shortest path within the shape boundary, to build shape descriptors. It is easy to see that the innerdistance is insensitive to shape articulations. For example, in Fig. 1, although the points on shapes Figs. 1a and 1c have similar spatial distributions, they are quite different in their part structures. On the other hand, shapes Figs. 1b and 1c appear to be from the same category with different articulations. The inner-distance between the two marked points is quite different in Figs. 1a and 1b, while almost the same in Figs. 1b and 1c. Intuitively, this example shows that the innerdistance is insensitive to articulation and sensitive to part structures, a desirable property for complex shape comparison. Note that the Euclidean distance does not have these properties in this example. This is because, defined as the length of the line segment between landmark points, the Euclidean distance does not consider whether the line segment crosses shape boundaries. In this example, it is clear that the inner-distance reflects part structure and articulation without explicitly decomposing shapes into parts. We will

study this problem in detail and give more examples in the following sections.

It is natural to use the inner-distance as a replacement for other distance measures to build new shape descriptors that are invariant/insensitive to articulation. In this paper, we propose and experiment with two approaches. In the first approach, by replacing the geodesic distance with the innerdistance, we extend the bending invariant signature for 3D surfaces [12] to the articulation invariant signature for 2D articulated shapes. In the second method, the innerdistance replaces the Euclidean distance to extend the shape context [5]. We design a dynamic programming method for silhouette matching that is fast and accurate since it utilizes the ordering information between contour points. Both approaches are tested on a variety of shape databases, including an articulated shape database,¹ MPEG7 CE-Shape-1 shapes, Kimia's silhouette [40], [39], ETH-80 [26], a Swedish leaf database [42], and a Smithsonian leaf database [2]. The excellent performance demonstrates the inner-distance's ability to capture part structures (not just articulations).

In practice, it is often desirable to combine shape and texture information for object recognition. For example, leaves from different species often share similar shapes but have different vein structures (e.g., Fig. 13). Using the gradient information along the shortest path, we propose a new shape descriptor that naturally takes into account the texture information inside a given shape. The new descriptor is applied to a foliage image task and excellent performance is observed.

The rest of this paper is organized as follows: Section 2 discusses related works. Section 3 first gives the definition of the inner-distance and its computation. Then, the articulation insensitivity of the inner-distance is proven. After that, we address the inner-distance's ability to capture part structures. Section 4 describes using the inner-distance and MDS to build articulation insensitive signatures for 2D articulated shapes.

The authors are with the Department of Computer Science and UMIACS, A.V. Williams Building, University of Maryland, College Park, MD 20742. E-mail: hbling@umiacs.umd.edu, djacobs@cs.umd.edu.

Manuscript received 23 Feb. 2006; revised 17 June 2006; accepted 28 June 2006; published online 13 Dec. 2006.

Recommended for acceptance by R. Klette. For information on obtaining reprints of this article, please send e-mail to: tpami@computer.org, and reference IEEECS Log Number TPAMI-0179-0206.

^{1.} This is a data set we collected and it is available at http:// www.cs.umd.edu/~hbling/Research/data/articu.zip.

Fig. 1. Three objects. The dashed lines denote shortest paths within the shape boundary that connect landmark points.

Section 5 describes the extension of the shape context using the inner-distance and gives a framework for using dynamic programming for silhouette matching and comparison. Section 6 introduces the new shape descriptor that captures texture information. Section 7 presents and analyzes all experiments. Section 8 concludes the paper.

2 RELATED WORK

2.1 Representation and Comparison of Shapes with Parts and Articulation

For general shape matching, a recent review is given in [45]. Roughly speaking, works handling parts can be classified into three categories. The first category (e.g., [3], [19], [14], [37], [15], [46], etc.) builds part models from a set of sample images and usually with some prior knowledge such as the number of parts. After that, the models are used for retrieval tasks such as object recognition and detection. These works usually use statistical methods to describe the articulation between parts and often require a learning process to find the model parameters. For example, Grimson [19] proposed some early work performing matching with precise models of articulation. Agarwal et al. [3] proposed a framework for object detection via learning sparse, part-based representations. The method is targeted to objects that consist of distinguishable parts with relatively fixed spatial configuration. Felzenszwalb and Huttenlocher [14] described a general method to statistically model objects with parts for recognition and detection. The method models appearance and articulation separately through parameter estimation. After that, the matching algorithm is treated as an energy minimization problem that can be solved efficiently by assuming that the pictorial representation has a tree structure. Schneiderman and Kanade [37] used a general definition of parts that corresponds to a transform from a subset of wavelet coefficients to a discrete set of values, then builds classifiers based on their statistics. Fergus et al. [15] treated objects as flexible constellations of parts and probabilistically represented objects using their shape and appearance information. These methods have been successfully used in areas such as face and human motion analysis, etc. However, for tasks where the learning process is prohibited, either due to the lack of training samples or due to the complexity of the shapes, they are hard to apply.

In contrast, the other two categories (e.g. [23], [4], [39], [41], [17], [30], etc.) capture part structures from only one image. The second category (e.g., [4], [30]) measures the similarity between shapes via a part-to-part (or segment-to-segment) matching and junction parameter distribution. These methods usually use only the boundary information such as the convex portions of silhouettes and curvatures of boundary points.

The third category, which our method belongs to, captures the part structure by considering the interior of shape boundaries. The most popular examples are the skeletonbased approaches, particularly the shock graph-based techniques ([23], [41], [39], etc.). Given a shape and its boundary, shocks are defined as the singularities of a curve evolution process that usually extracts the skeleton simultaneously. The shocks are then organized into a shock graph, which is a directed, acyclic tree. The shock graph forms a hierarchical representation of the shape and naturally captures its part structure. The shape matching problem is then reduced to a tree matching problem. Shock graphs are closely related to shape skeletons or the medial axis [7], [23]. Therefore, they benefit from the skeleton's ability to describe shape, including robustness to articulation and occlusion. However, they also suffer from the same difficulties as the skeleton, especially in dealing with boundary noise. Another related unsupervised approach is proposed by Gorelick et al. [17]. They used the average length of random walks of points inside a shape silhouette to build shape descriptors. The average length is computed as a solution to the Poisson equation. The solution can be used for shape analysis tasks such as skeleton and part extraction, local orientation detection, shape classification, etc.

The inner-distance is closely related to the skeletonbased approaches in that it also considers the interior of the shape. Given two landmark points, the inner-distance can be "approximated" by first finding their closest points on the shape skeleton, then measuring the distance along the skeleton. In fact, the inner-distance can also be computed via the evolution equations starting from boundary points. The main difference between the inner-distance and the skeleton-based approaches is that the inner-distance discards the structure of the path once their lengths are computed. By doing this, the inner-distance is more robust to disturbances along boundaries and becomes very flexible for building shape descriptors. For example, it can be easily used to extend existing descriptors by replacing Euclidean distances. In addition, the inner-distance-based descriptors can be used for landmark point matching. This is very important for some applications such as motion analysis. The disadvantage is the loss of the ability to perform part analysis. It is an interesting future work to see how to combine the inner-distance and skeleton-based techniques.

2.2 Geodesic Distances for 3D Surfaces

The inner-distance is very similar to the geodesic distance on surfaces. The geodesic distance between any pair of points on a surface is defined as the length of the shortest path on the surface between them. One of our motivations comes from Elad and Kimmel's work [12] using geodesic distances for 3D surface comparison through multidimensional scaling (MDS). Given a surface and sample points on it, the surface is distorted using MDS so that the Euclidean distances between the stretched sample points are as similar as possible to their corresponding geodesic distance is invariant to bending, the stretched surface forms a bending invariant signature of the original surface.

Bending invariance is quite similar to the 2D articulation invariance in which we are interested. However, the direct counterpart of the geodesic distance in 2D does not work for our purpose. Strictly speaking, the geodesic distance between

Fig. 2. Geodesic distances on 2D shapes. Using the geodesic distances along the contours, the two shapes are indistinguishable.

two points on the "surface" of a 2D shape is the distance between them along the contour. If a simple (i.e., non-selfintersecting), closed contour has length M, then, for any point, p, and any d < M/2, there will be exactly two points q_1 , q_2 that are a distance d away from p, along the contour (see Fig. 2 for examples). Hence, a histogram of the geodesic distance to all points on the contour degenerates into something trivial which does not capture shape. Unlike the geodesic distance, the inner-distance measures the length of the shortest path within the shape boundary instead of along the shape contour (surface). We will show that the inner distance is very informative and insensitive to articulation.

There are other works using geodesic distances in shape descriptions. For example, Hamza and Krim [20] applied geodesic distance using *shape distributions* ([35]) for 3D shape classification. Zhao and Davis [48] used the color information along the shortest path within a human silhouette. The articulation invariance of shortest paths is also utilized by them, but in the context of background subtraction. Ling and Jacobs [28] proposed using the geodesic distance to achieve deformation invariance in intensity images. A preliminary version of this paper appeared as [29].

2.3 Shape Contexts for 2D Shapes

The *shape context* was introduced by Belongie et al. [5]. It describes the relative spatial distribution (distance and orientation) of landmark points around feature points. Given *n* sample points x_1, x_2, \ldots, x_n on a shape, the shape context at point x_i is defined as a histogram h_i of the relative coordinates of the remaining n - 1 points

$$h_i(k) = \#\{x_j : j \neq i, x_j - x_i \in bin(k)\},\tag{1}$$

where the bins uniformly divide the log-polar space. The distance between two shape context histograms is defined using the χ^2 statistic.

For shape comparison, Belongie et al. used a framework combining shape context and thin-plate-splines [8] (SC+TPS). Given the points on two shapes A and B, first the point correspondences are found through a weighted bipartite matching. Then, TPS is used iteratively to estimate the transformation between them. After that, the similarity D between A and B is measured as a weighted combination of three parts

$$D = aD_{ac} + D_{sc} + bD_{be},\tag{2}$$

where D_{ac} measures the appearance difference. D_{be} measures the bending energy. The D_{sc} term, named the *shape context distance*, measures the average distance between a point on A and its most similar counterpart on B (in the sense of (10)). *a*, *b* are weights (*a* = 1.6, *b* = 0.3 in [5]).

The shape context uses the Euclidean distance to measure the spatial relation between landmark points. This causes less discriminability for complex shapes with articulations (e.g., Figs. 8 and 9). The inner-distance is a

Fig. 3. Definition of the inner-distance. The dashed polyline shows the shortest path between points x and y.

natural way to solve this problem since it captures the shape structure better than the Euclidean distance. We use the inner-distance to extend the shape context for shape matching. The advantages of the new descriptor are strongly supported by experiments.

Belongie et al. showed that the SC+TPS is very effective for shape matching tasks. Due to its simplicity and discriminability, the shape context has become quite popular recently. Some examples can be found in [33], [43], [44], [47], [34], [26]. Among these works, [43] is most related to our approach. Thayananthan et al. [43] suggested including a figural continuity constraint for shape context matching via an efficient dynamic programming scheme. In our approach, we also include a similar constraint by assuming that contour points are ordered and use dynamic programming for matching the shape context at contour sample points. Notice that, usually, dynamic programming encounters problems with shapes with multiple boundaries (e.g., scissors with holes). The inner-distance has no such problem since it only requires landmark points on the outermost silhouette and the shortest path can be computed taking account of holes. This will be discussed in the following sections.

3 THE INNER-DISTANCE

In this section, we will first give the definition of the innerdistance and discuss how to compute it. Then, the innerdistance's insensitivity to part articulations is proven. After that, we will discuss its ability to capture part structures.

3.1 The Inner-Distance and Its Computation

First, we define a shape *O* as a connected and closed subset of \mathbf{R}^2 . Given a shape *O* and two points $x, y \in O$, the innerdistance between *x*,*y*, denoted as d(x, y; O), is defined as the length of the shortest path connecting *x* and *y* within *O*. One example is shown in Fig. 3.

Note. 1) There may exist multiple shortest paths between given points. However, for most cases, the path is unique. In rare cases where there are multiple shortest paths, we arbitrarily choose one. 2) We are interested in shapes defined by their boundaries, hence only boundary points are used as landmark points. In addition, we approximate a shape with a polygon formed by their landmark points.

A natural way to compute the inner-distance is using shortest path algorithms. It consists of two steps:

1. Build a graph with the sample points. First, each sample point is treated as a node in the graph. Then, for each pair of sample points p_1 and p_2 , if the line segment connecting p_1 and p_2 falls entirely within the object, an edge between p_1 and p_2 is added to the graph with its weight equal to the Euclidean distance $||p_1 - p_2||$. An example is shown in Fig. 4.

Fig. 4. Computation of the inner-distance. Left, the shape with the sampled silhouette landmark points. Middle, the graph built using the landmark points. Right, a detail of the right top of the graph. Note how the inner-distance captures the holes.

Note. 1) Neighboring boundary points are always connected. 2) The inner-distance reflects the existence of holes without using sample points from hole boundaries,² which allows dynamic programming algorithms to be applied to shapes with holes.

2. Apply a shortest path algorithm to the graph. Many standard algorithms [11] can be applied here, among them Johnson or Floyd-Warshall's algorithms have $O(n^3)$ complexity (*n* is the number of sample points).

In this paper, we are interested in the inner-distance between all pairs of points. Now, we will show that this can be computed with $O(n^3)$ time complexity for n sample points. First, it takes time O(n) to check whether a line segment between two points is inside the given shape (by checking the intersections between line p_1p_2 and all other boundary line segments, with several extra tests). As a result, the complexity of graph construction is of $O(n^3)$. After the graph is ready, the all-pair shortest path algorithm has complexity of $O(n^3)$. Therefore, the whole computation takes $O(n^3)$.

Note that, when *O* is convex, the inner-distance reduces to the Euclidean distance. However, this is not always true for nonconvex shapes (e.g., Fig. 1). This suggests that the inner-distance is influenced by part structure to which the concavity of contours is closely related [21], [13]. In the following sections, we discuss this in detail.

3.2 Articulation Insensitivity of the Inner-Distance

As shown in Fig. 1, the inner-distance is insensitive to articulation. Intuitively, this is true because an articulated shape can be decomposed into rigid parts connected by junctions. Accordingly, the shortest path between landmark points can be divided into segments within each parts. We will first give a very general model for part articulation and then formally prove articulation insensitivity of the inner-distance.

3.2.1 A Model of Articulated Objects

Before discussing the articulation insensitivity of the innerdistance, we need to provide a model of articulated objects. Note that our method does not involve any part models, the model here is only for the analysis of the properties of the inner-distance. Intuitively, when a shape *O* is said to have articulated parts, it means

 O can be decomposed into several *parts*, say, O₁, O₂,...,O_n, where n is the number of parts. These parts are connected by *junctions*.

2. The points along hole boundaries may still be needed for computing the inner-distance, but not for building descriptors.

Fig. 5. Articulated objects. (a) An articulated shape. (b) Overlapping junctions (the five dark areas). (c) Ideal articulation.

- The junctions between parts are very small compared to the parts they connect.
- The articulation of *O* as a transformation is rigid when limited to any part *O_i*, but can be nonrigid on the junctions.
- The new shape *O*' achieved from articulation of *O* is again an articulated object and can articulate *back* to *O*.

Based on these intuitions, we define an articulated object $O \subset \mathbf{R}^2$ of n parts together with an articulation f as:

$$O = \left\{ \bigcup_{i=1}^{n} O_i \right\} \bigcup \left\{ \bigcup_{i \neq j} J_{ij} \right\},$$

where

- ∀i, 1 ≤ i ≤ n, part O_i ⊂ R² is connected and closed and O_i ∩ O_j = Ø, ∀i ≠ j, 1 ≤ i, j ≤ n.
- $\forall i \neq j, 1 \leq i, j \leq n, J_{ij} \subset \mathbf{R}^2$, connected and closed, is the junction between O_i and O_j . If there is no junction between O_i and O_j , then $J_{ij} = \emptyset$. Otherwise, $J_{ij} \bigcap O_i \neq \emptyset, J_{ij} \bigcap O_j \neq \emptyset$.
- $diam(J_{ij}) \leq \epsilon$, where $diam(P) \doteq max_{x,y \in P} \{d(x, y; P)\}$ is the *diameter* of a point set $P \subset \mathbf{R}^2$ in the sense of the inner-distance. $\epsilon \geq 0$ is constant and very small compared to the size of the articulated parts. A special case is $\epsilon = 0$, which means that all junctions degenerate to single points and O is called an *ideal articulated object*.

Fig. 5a shows an example articulated shape with three parts and two junctions.

The articulation from an articulated object O to another articulated object O' is a one-to-one continuous mapping f such that:

- *O'* has the decomposition $O' = \{\bigcup_{i=1}^{n} O'_i\} \bigcup \{\bigcup_{i \neq j} J'_{ij}\}$. Furthermore, $O'_i = f(O_i)$, $\forall i, 1 \le i \le n$ are parts of O' and $J'_{ij} = f(J_{ij})$, $\forall i \ne j, 1 \le i, j \le n$ are junctions in O'. This preserves the topology between the articulated parts. In particular, the deformed junctions still have a diameter less than or equal to ϵ .
- *f* is rigid (rotation and translation only) when restricted to O_i , $\forall i, 1 \le i \le n$. This means inner-distances within each part will not change.
- **Notes.** 1) In the above and following, we use the notation $f(P) \doteq \{f(x) : x \in P\}$ for short. 2) It is obvious from the above definitions that f^{-1} is an articulation that maps O' to O.

The above model of articulation is very general and flexible. For example, there is no restriction on the shape of the junctions. Junctions are even allowed to overlap each other. Furthermore, the articulation f on the junctions are not required to be smooth. Figs. 5b and 5c gives two more examples of articulated shapes.

3.2.2 Articulation Insensitivity

We are interested in how the inner-distance varies under articulation. From previous paragraphs, we know that changes of the inner-distance are due to junction deformations. Intuitively, this means the change is very small compared to the size of parts. Since most pairs of points have inner-distances comparable to the sizes of parts, the relative change of the inner-distances during articulation are small. This roughly explains why the inner-distances are articulation insensitive.

We will use following notations: 1) $\Gamma(x_1, x_2; P)$ denotes a shortest path from $x_1 \in P$ to $x_2 \in P$ for a closed and connected point set $P \subset \mathbf{R}^2$ (so $d(x_1, x_2; P)$ is the length of $\Gamma(x_1, x_2; P)$). 2) ' indicates the image of a point or a point set under *f*, e.g., $P' \doteq f(P)$ for point set *P*, $p' \doteq f(p)$ for a point *p*. 3) "[" and "]" denote the concatenation of paths.

Let us first point out two facts about the inner-distance within a part or crossing a junction. Both facts are direct results from the definitions in Section 3.2.1.

$$d(x, y; O_i) = d(x', y'; O'_i) \quad \forall x, y \in O_i, 1 \le i \le n,$$
(3)

$$\begin{aligned} |d(x, y; O) - d(x', y'; O')| &\leq \epsilon, \forall x, y \in J_{ij} \\ \forall i \neq j, 1 \leq i, j \leq n, J_{ij} \neq \emptyset. \end{aligned}$$

$$\tag{4}$$

Note that (4) does not require the shortest path between x, y to lie within the junction J_{ij} . These two facts describe the change of the inner-distances of restricted point pairs. For the general case of $x, y \in O$, we have the following theorem:

Theorem. Let *O* be an articulated object and *f* be an articulation of *O* as defined above. $\forall x, y \in O$, suppose the shortest path $\Gamma(x, y; O)$ goes through *m* different junctions in *O* and $\Gamma(x', y'; O')$ goes through *m'* different junctions in *O'*, then

$$|d(x, y; O) - d(x', y'; O')| \le \max\{m, m'\}\epsilon.$$
 (5)

Proof. The proof uses the intuition mentioned above. First, we decompose $\Gamma(x, y; O)$ into segments. Each segment is either within a part or across a junction. Then, applying (3) and (4) to each segment leads to the theorem.

First, $\Gamma(x, y; O)$ is decomposed into *l* segments:

$$\Gamma(x, y; O) = [\Gamma(p_0, p_1; R_1), \Gamma(p_1, p_2; R_2), \dots, \Gamma(p_{l-1}, p_l; R_l)]$$

using point sequence p_0, p_1, \ldots, p_l and regions R_1, \ldots, R_l via the steps using Algorithm 1.

Algorithm 1 Decompose $\Gamma(x, y; O)$ $p_0 \leftarrow x, i \leftarrow 0$

while $p_i \neq y$ do {/*find p_{i+1} */}

1) $\Gamma(p_{i-1}, p_i; O_k) \subseteq \Gamma(x, y; O)$

 $i \leftarrow i + 1$

 $R_i \leftarrow$ the region (a part or a junction) $\Gamma(x, y; O)$ enters after p_{i-1}

if $R_i = O_k$ for some k (R_i is a part) then {/*enter a part*} Set p_i as a point in O_k such that

Fig. 6. (a) Decomposition of $\Gamma(x,y;O)$ (the dashed line) with $x = p_0, p_1, p_2, p_3 = y$. Note that a segment can go through a junction more than once (e.g., p_1p_2). (b) Construction of $\widetilde{C}(x',y';O')$ in O' (the dashed line). Note that $\widetilde{C}(x',y';O')$ is not the shortest path.

- 2) $\Gamma(x, y; O)$ enters a new region (a part or a junction) after p_i or $p_i = y$
- else {/* $R_i = J_{rs}$ for some r, s (R_i is a junction), enter a junction*/}
- Set p_i as the point in $J_{rs} \bigcap \Gamma(x, y; O)$ such that $\Gamma(x, y; O)$ never reenters J_{rs} after p_i .
- $R_i \leftarrow$ the union of all the parts and junctions $\Gamma(p_{i-1}, p_i; O)$ passes through (note $J_{rs} \subseteq R_i$).

end if end while

end w $l \leftarrow i$

An example of this decomposition is shown in Fig. 6a. With this decomposition, d(x, y; O) can be written as:

$$d(x, y; O) = \sum_{1 \le i \le l} d(p_{i-1}, p_i; R_i)$$

Suppose m_1 of the segments cross junctions (i.e., segments not contained in any single part), then, obviously, $m_1 \leq m$.

In *O*', we construct a path from x' to y' corresponding to $\Gamma(x, y; O)$ as follows (e.g., Fig. 6b):

$$\widetilde{C}(x',y';O') = [\Gamma(p'_0,p'_1;R'_1), \Gamma(p'_1,p'_2;R'_2), \dots, \Gamma(p'_{l-1},p'_l;R'_l)].$$

Note that C(x', y'; O') is not necessarily the shortest path in O'. Denote $\tilde{d}(x', y'; O')$ as the length of $\tilde{C}(x', y'; O')$, it has the following property due to (3), (4):

$$|d(x, y; O) - \widetilde{d}(x', y'; O')| \le m_1 \epsilon \le m \epsilon.$$
(6)

On the other hand, since O can be articulated from O' through f^{-1} , we can construct $\widetilde{C}(x, y; O)$ from $\Gamma(x', y'; O')$ in the same way we constructed $\widetilde{C}(x', y'; O')$ from $\Gamma(x, y; O)$. Then, similarly to (6), there is

$$|d(x',y';O') - d(x,y;O)| \le m'\epsilon.$$
(7)

Combining (6) and (7),

$$d(x, y; O) - m'\epsilon \le \widetilde{d}(x, y; O) - m'\epsilon \le d(x', y'; O')$$
$$\le \widetilde{d}(x', y'; O') \le d(x, y; O) + m\epsilon.$$

This implies (5).

From (5), we can make two remarks concerning changes of inner-distances under articulation:

- 1. The inner-distance is strictly invariant for ideal articulated objects. This is obvious since $\epsilon = 0$ for ideal articulations.
- 2. Since ϵ is very small, for most pairs of x, y, the relative change of inner-distance is very small. This means the inner-distance is insensitive to articulations.

Fig. 7. A shape of a shoe that has no clear part decomposition.

+ + + + + + + +	+ + • • • • • •	+ $+$ $+$ $+$ $+$ $+$ $+$	+ + • • • • • • •
+ + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + +	+ + + + + + + + + + + + + + + + + + + +
+ + + + + + + +	+ + • • • • • •	+ + + + + + + + +	+ + + + + + + +
+ + + + + + + +	+ + • • • • • •		+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + +	+ + • • • • • •	+ + + + + + + +	+ + + + + + +
+ + + + + + +	+ + • • • • • •	4 6 4 6 4 6 4 4	+ + + + + + +

Fig. 8. With the same sample points, the distributions of Euclidean distances between all pairs of points are indistinguishable for the four shapes, while the distributions of the inner-distances are quite different.

We further clarify several issues. First, the proof depends on the size limitation of junctions. The intuition is that a junction should have a relatively smaller size compared to parts; otherwise, it is more like a part itself. A more precise part-junction definition may provide a tighter upper bound but sacrifice some generality. The definition also captures our intuition about what distinguishes articulation from deformation. Second, the part-junction model is not actually used at all when applying the inner-distance. In fact, one advantage of using the inner-distance is that it *implicitly* captures part structure, whose definition is still not clear in general.

3.3 Inner-Distances and Part Structures

In addition to articulation insensitivity, we believe that the inner-distance captures part structures better than the Euclidean distance. This is hard to prove because the definition of part structure remains unclear. For example, Basri et al. [4] gave a shape of a shoe (Fig. 7) which has no clear part decomposition, although it feels like it has more than one part.

Instead of giving a rigorous proof, we show how the innerdistance captures part structure with examples and experiments. Figs. 1, 8, and 12 show examples where the innerdistance distinguishes shapes with parts while the Euclidean distance runs into trouble because the sample points on the shape have the same spatial distributions. For example, the original shape context [5] may fail on these shapes. One may argue that the Euclidean distance will also work on these examples with an increased number of landmark points. This argument has several practical problems. First, the computational cost will be increased, usually in a quadratic order or higher. Second, no matter how many points are used, there can always be finer structures. Third, as shown in Fig. 9, for some shapes this strategy will not work.

During retrieval experiments using several shape databases, the inner-distance-based descriptors all achieve excellent performance. Through observation we have found that some databases (e.g., MPEG7) are difficult for retrieval mainly due to the complex part structures in their shapes, though they have little articulation. These experiments show that the inner-distance is effective at capturing part structures (see Section 7.2 and Figs. 12 and 18 for details).

Aside from part structures, examples in Fig. 9 show cases where the inner-distance can better capture some shapes without parts. We expect further studies on the relationship between inner-distances and shape in the future.

Fig. 9. With about the same number of sample points, the four shapes are virtually indistinguishable using distribution of Euclidean distances, as in Fig. 8. However, their distributions of the inner-distances are quite different except for the first two shapes. Note: 1) None of the shapes has (explicit) parts. 2) More sample points will not affect the above statement.

Fig. 10. Articulation invariant signatures. (a) and (c) show two shapes related by articulation. (b) and (d) show their signatures.

4 ARTICULATION INVARIANT SIGNATURES

To build shape descriptors with the inner-distance is straightforward. Theoretically, it can be used to replace other distance measures (e.g., the Euclidean distance) in any existing shape descriptors. In this section, the inner-distance is used to build articulation invariant signatures for 2D shapes using multidimensional scaling (MDS) similar to [12]. In the next section, we will show how to use the inner-distance to extend the shape context for shape matching.

Given sample points $P \doteq \{p_i\}_{i=1}^n$ on a shape O and the inner-distances $\{d_{ij}\}_{i,j=1}^n$ between them, MDS finds the transformed points $Q \doteq \{q_i\}_{i=1}^n$ such that the Euclidean distances $\{e_{ij}(Q) = ||q_i - q_j||\}_{i,j=1}^n$ minimize the *stress* S(Q) defined as:

$$S(Q) = \frac{\sum_{i < j} w_{ij} (d_{ij} - e_{ij}(Q))^2}{\sum_{i < j} d_{ij}^2},$$
(8)

where w_{ij} are weights. In our experiment, we use the least squares MDS with $w_{ij} = 1$. The stress can be minimized using the SAMCOF (Scaling by Maximizing a Convex Function) algorithm [9]. SAMCOF is an iterative algorithm that keeps decreasing the objective function, i.e., the stress (8). The details can be find in Elad and Kimmel's paper [12].

Fig. 10 shows two examples of the articulation invariant signatures computed by the above approach. It can be seen that, although the global shape of the two original objects are quite different due to the articulation, their signatures are very similar to each other. More examples of the articulation invariant signatures can be seen in Fig. 15.

It is attractive to use the articulation invariant signature for classifying articulated shapes. In our experiments, we combine it with the shape context. The method contains three steps: 1) use the inner-distance and MDS to get the articulation invariant signatures, 2) build the shape context on the signatures, and 3) use dynamic programming for shape context matching. The third step is described in detail in the next section. We call this approach MDS+SC+DP. The experimental results show significant improvement compared to the shape context on the original shapes.

Fig. 11. The inner-angle $\theta(p,q;O)$ between two boundary points.

Fig. 12. Shape context (SC) and inner-distance shape context (IDSC). The top row shows three objects from the MPEG7 shape database (Section 7.2), with two marked points p, q on each shape. The next rows show (from top to bottom), the SC at p, the IDSC at p, the SC at q, the IDSC at q. Both the SC and the IDSC use local relative frames (i.e., aligned to the tangent). In the histograms, the x axis denotes the orientation bins and the y axis denotes log distance bins.

5 INNER-DISTANCE SHAPE CONTEXT: MATCHING AND RETRIEVAL

5.1 Inner-Distance Shape Context (IDSC)

To extend the shape context defined in (1), we redefine the bins with the inner-distance. The Euclidean distance is directly replaced by the inner-distance. The relative orientation between two points can be defined as the tangential direction at the starting point of the shortest path connecting them. However, this tangential direction is sensitive to articulation. Fortunately, for a boundary point p and its shortest path $\Gamma(p,q;O)$ to another point q, the angle between the contour tangent at p and the direction of $\Gamma(p,q;O)$ at p is insensitive to articulation (invariant to ideal articulation). We call this angle the inner-angle (e.g., see Fig. 11) and denote it as $\theta(p,q;O)$. The inner-angle is used for the orientation bins. This is similar to using the local coordinate system suggested in [5] to get rotation invariance. In practice, the shape boundary may be distorted by noise that reduces the stability of the inner-angle. To deal with this problem, we smooth the contour using a small neighborhood before computing the inner-angle.

Fig. 12 shows examples of the shape context computed by the two different methods. It is clear that SC is similar for all three shapes, while IDSC is only similar for the beetles. From this figure, we can see that the inner-distance is better at capturing parts than SC.

The inner-angle is just a byproduct of the shortest path algorithms and does not affect the complexity. Once the inner-distances and orientations between all pair of points are ready, it takes $O(n^2)$ time to compute the histogram (1).

5.2 Shape Matching through Dynamic Programming

The contour matching problem is formulated as follows: Given two shapes *A* and *B*, describe them by point sequences on their contour, say, $p_1p_2...p_n$ for *A* with *n* points and $q_1q_2...q_m$ for *B* with *m* points. Without loss of generality, assume $n \ge m$. The matching π from *A* to *B* is a mapping from 1, 2, ..., n to 0, 1, 2, ..., m, where p_i is

Fig. 13. Shapes of three leaves ((a), (b), and (c)) are not enough to distinguish them. Their texture ((d), (e), and (f), respectively) apparently helps.

matched to $q_{\pi(i)}$ if $\pi(i) \neq 0$ and otherwise left unmatched. π should minimize the match cost $H(\pi)$ defined as

$$C(\pi) = \sum_{1 \le i \le n} c(i, \pi(i)), \tag{9}$$

where $c(i, 0) = \tau$ is the penalty for leaving p_i unmatched, and for $1 \le j \le m$, c(i, j) is the cost of matching p_i to q_j . This is measured using the χ^2 statistic as in [5]

$$c(i,j) \equiv \frac{1}{2} \sum_{1 \le k \le K} \frac{[h_{A,i}(k) - h_{B,j}(k)]^2}{h_{A,i}(k) + h_{B,j}(k)}.$$
 (10)

Here, $h_{A,i}$ and $h_{B,j}$ are the shape context histograms of p_i and q_j , respectively, and K is the number of histogram bins.

Since the contours provide orderings for the point sequences $p_1p_2...p_n$ and $q_1q_2...q_m$, it is natural to restrict the matching π with this order. To this end, we use dynamic programming (DP) to solve the matching problem. DP is widely used for contour matching. Detailed examples can be found in [43], [4], [36]. We use the standard DP method [11] with the cost functions defined as (9) and (10).

By default, the above method assumes the two contours are already aligned at their start and end points. Without this assumption, one simple solution is to try different alignments at all points on the first contour and choose the best one. The problem with this solution is that it raises the matching complexity from $O(n^2)$ to $O(n^3)$. Fortunately, for the comparison problem, it is often sufficient to try aligning a fixed number of points, say, k points. Usually, k is much smaller than m and n, this is because shapes can be first rotated according to their moments. According to our experience, for n, m = 100, k = 4, or 8 is good enough and larger k does not demonstrate significant improvement. Therefore, the complexity is still $O(kn^2) = O(n^2)$.

Bipartite graph matching is used in [5] to find the point correspondence π . Bipartite matching is more general since it minimizes the matching cost (9) without additional constraints. For example, it works when there is no ordering constraint on the sample points (while DP is not applicable). For sequenced points along silhouettes, however, DP is more efficient and accurate since it uses the ordering information provided by shape contours.

5.3 Shape Distances

Once the matching is found, we use the matching $\cot C(\pi)$ as in (9) to measure the similarity between shapes. One thing to mention is that dynamic programming is also suitable for shape context. In the following, we use IDSC+DP to denote the method of using dynamic programming matching with the IDSC and use SC+DP for the similar method with the SC.

In addition to the excellent performance demonstrated in the experiments, the IDSC+DP framework is simpler than the SC+TPS framework (2) [5]. First, besides the size of shape context bins, IDSC+DP has only two parameters to tune: 1) The penalty τ for a point with no matching, usually set to 0.3, and 2) the number of start points k for different alignments during the DP matching, usually set to 4 or 8. Second, IDSC+DP is easy to implement since it does not require the appearance and transformation model as well as the iteration and outlier control. Furthermore, the DP matching is faster than bipartite matching, which is important for retrieval in large shape databases.

The time complexity of the IDSC+DP consists of three parts. First, the computation of inner-distances can be achieved in $O(n^3)$ with Johnson or Floyd-Warshall's shortest path algorithms, where n is the number of sample points. Second, the construction of the IDSC histogram takes $O(n^2)$. Third, the DP matching costs $O(n^2)$ and only this part is required for all pairs of shapes, which is very important for retrieval tasks with large image databases. In our experiment using partly optimized Matlab code on a regular Pentium IV 2.8G PC, a single comparison of two shapes with n = 100 takes about 0.31 second.

6 SHORTEST PATH TEXTURE CONTEXT

In real applications, the shape information is often not enough for object recognition tasks. On the one hand, shapes from different classes sometimes are more similar than those from the same class (e.g., Fig. 13). On the other hand, shapes are often damaged due to occlusion and selfoverlapping (some examples can be found in Fig. 24). Naturally, the combination of texture and shape information is desirable for this problem. In [5], the appearance information is included into the SC+TPS framework by considering appearance around landmark points. In this section, we will introduce a new descriptor that considers the texture information inside the whole shape.

In previous sections, the inner-distance is shown to be articulation insensitive due to the fact that the shortest paths within shape boundaries are robust to articulation. Therefore, the texture information along these paths provides a natural articulation insensitive texture description. Note that this is true only when the paths are robust. In this section, we use local intensity gradient orientations to capture texture information because of their robustness and efficiency. To gain articulation invariance, the angles between intensity gradient directions and shortest path directions are used. In the following, we call these angles *relative orientations*. Given shape *O* and two points *p*, *v* on it, we use $\alpha(p, v; O)$ to denote the relative orientation with respect to the shortest path $\Gamma(p, v; O)$. An example is shown in Fig. 14.

Based on the above idea, we propose the *shortest path texture context* (SPTC) as a combined shape and texture descriptor. SPTC is an extension of the IDSC in that it measures the distributions of (weighted) relative orientations along shortest paths instead of the joint distributions of innerdistance and inner-angle distributions of landmark points. In our application, the relative orientations are weighted by gradient magnitudes when building into SPTC. For texture undergoing large nonuniform illumination change, it might be better to use nonweighted relative orientations.

Fig. 14. Relative orientation $\alpha(p, v; O)$ at point v. The arrow points to local intensity gradient direction.

Given *n* landmark points x_1, x_2, \ldots, x_n sampled from the boundary of shape *O*, the SPTC for each x_i is a threedimensional histogram h_i (we abuse notation to use h_i again for the histograms). Similarly to IDSC, SPTC uses the innerdistance and the inner-angle as the first two dimensions. The third dimension of SPTC is the (weighted) relative orientation that takes into account the texture information along shortest paths. To build h_i , for each x_j , $j \neq i$, a normalized histogram of relative orientation along the shortest path $\Gamma(x_i, x_j; O)$ is added into the relative orientation bin located at the innerdistance and inner-angle bin determined by x_j . The algorithm is described in Algorithm 2. Note that when the number of relative orientation bins $n_r = 1$, SPTC reduces to IDSC.

Algorithm 2 Shortest path texture context h_i at landmark point x_i

- $h_i \leftarrow 3D$ matrix with zero entries everywhere
- for j = 1 to $n, j \neq i$ do
 - $\Gamma(x_i, x_j; O) \leftarrow$ shortest path from x_i to x_j $\hat{h} \leftarrow 1D$ weighted histogram of the relative
 - orientations along $\Gamma(x_i, x_j; O)$
 - $\hat{h} \leftarrow \hat{h} / \|\hat{h}\|_1$ {/* Normalize \hat{h} , where $\|.\|_1$ is the L_1 norm */}

 $d_{id} \leftarrow$ the inner-distance bin index computed from $d(x_i, x_j; O)$

- $\theta_{id} \leftarrow$ the inner-angle bin index computed from $\theta(x_i, x_j; O)$
- for $\alpha_{id} = 1$ to n_r do { /* n_r is the number of relative orientation bins */}

 $h_i(d_{id}, \theta_{id}, \alpha_{id}) \leftarrow h_i(d_{id}, \theta_{id}, \alpha_{id}) + h(\alpha_{id})$ end for

end for

$$h_i \leftarrow h_i/|h_i| \qquad \{/* \text{ Normalize } h_i */\}$$

A similar idea of using "relative orientation" is used by Lazebnik et al. [25] for rotation invariant texture description. Shape context had also been extended for texture description by including intensity gradient orientation (e.g., [31]). SPTC is different from these methods in three ways. First, SPTC combines texture information and global shape information while the above methods work for local image patches. Second, the above methods sample the orientations at a large number of pixels inside a patch, which is too expensive for our task without utilizing shortest paths. Third, none of the previous methods is articulation invariant. Another related work by Zhao and Davis [48] used the color information along the shortest path for background subtraction. Instead of color information, we use gradient orientation, which is more robust to lighting change [10], which is very important for classification tasks. In the next section, SPTC is tested in two leaf image databases and excellent performance is observed.

Fig. 15. (a) Articulated shape database. This data set contains 40 images from eight objects with articulation. Each column contains five images from the same object. (b) MDS of the articulated shape database using the inner-distances.

7 EXPERIMENTS

This section describes the experiments testing proposed approaches. First, we test the inner-distance's articulation insensitivity with an articulated shape data set. After that, the inner-distance is tested in comparison with other stateof-the-art approaches on several widely tested shape data sets, including the MPEG7 CE-Shape-1 shapes, silhouette Kimia's silhouettes [40], [39], ETH-80 [26]. Then, the proposed approach is tested on two foliage image data sets, a Swedish leaf data set [42] and a Smithsonian leaf data set. These experiments show how the inner-distance works in real applications and how the SPTC performs on shapes with texture. Finally, we will show the potential use of the IDSC on human motion analysis.

Now, we describe the parameters used in the experiments. We use n to denote the number of landmark points (on the outer contour of shapes). Landmark points are sampled uniformly (as in [5]) to avoid bias. n is chosen according to the task. In general, larger n will produce greater accuracy with less efficiency. For the size of histograms, n_d , n_{θ} , and n_r are used for the number of inner-distance bins, the number of inner-angle bins, and the number of relative orientation bins, respectively. A typical setting for the bin number is $n_d = 5$, $n_{\theta} = 12$, and $n_r = 8$. In our experiments, we sometimes use $n_d = 8$ to get better results. For dynamic programming, k denotes the number of different starting points for alignment (uniformly chosen from landmark points). The choice of kwas discussed in Section 5.3. In general, a larger k increases the accuracy. However, in practice, we found that k = 4 - 8usually gives satisfactory results. For example, k = 8 is used for the MPEG7 data set. However, we did notice that larger k can improve the performance further, e.g., k = 16 is used for the ETH-80 data set that involves wildly varied rotations. We did not rotate shapes according to their moments, which might be helpful for tasks involving a large variation in orientations. The penalty τ for one occlusion is always set to be 0.3 (our experiments show that different τ in the range of [0.25, 0.5] do not affect the results too much). In all the

TABLE 1 Retrieval Result on the Articulate Data Set

Distance Type Top 1 Top 2 Top 3 Top 4 L_2 (baseline) 25/40 15/40 12/40 10/40 SC+DP 20/40 10/40 11/40 5/40 MDS+SC+DP 36/40 26/40 17/40 15/40 IDSC+DP 40/40 34/40 35/40 27/40	ک لا سب				
Distance Type Top 1 Top 2 Top 3 Top 4 L_2 (baseline) 25/40 15/40 12/40 10/40 SC+DP 20/40 10/40 11/40 5/40 MDS+SC+DP 36/40 26/40 17/40 15/40	IDSC+DP	40/40	34/40	35/40	27/40
Distance type Top 1 Top 2 Top 3 Top 4 L_2 (baseline) 25/40 15/40 12/40 10/40 SC+DP 20/40 10/40 11/40 5/40	MDS+SC+DP	36/40	26/40	17/40	15/40
Distance type Top 1 Top 2 Top 3 Top 4 L_2 (baseline) 25/40 15/40 12/40 10/40	SC+DP	20/40	10/40	11/40	5/40
Distance Type Top 1 Top 2 Top 3 Top 4	L_2 (baseline)	25/40	15/40	12/40	10/40
Distance True True 1 True 2 True 2 True 4	Distance Type	Top 1	Top 2	Top 3	Top 4

experiments, the parameters for MDS+SC+DP are the same as in IDSC+DP. Furthermore, for data sets that have no previously reported shape context matching results, we run the SC+DP for comparison with the same parameters as IDSC+DP.

7.1 Articulated Database

To show the articulation insensitivity of the inner-distance, we apply the proposed articulation invariant signature and the IDSC+DP approach to an articulated shape data set we collected. The data set contains 40 images from eight objects. Each object has five images articulated to different degrees (see Fig. 15). The data set is very challenging because of the similarity between different objects (especially the scissors). The holes of the scissors make the problem even more difficult.

The parameters in the experiment are: n = 200, $n_d = 5$, $n_{\theta} = 12$. Since all the objects are at the same orientation, we align the contours by forcing them to start from the bottom-left points and then set k = 1 for DP matching. The articulation invariant signatures of the shapes are computed and shown in Fig. 15.

To evaluate the recognition result for each image, the four most similar matches are chosen from other images in the data set. The retrieval result is summarized as the number of first, second, third, and fourth most similar matches that come from the correct object. Table 1 shows the retrieval results. It demonstrates that both the articulation invariant signature and the IDSC help to improve recognition a lot. This verifies our claim that the inner-distance is very effective for

Fig. 16. Left: SC+DP on the articulated shape database. The top four retrieval results of 20 images are shown here. The top row shows the querying images. Row two to row five show the top one to top four retrieval results, respectively. The numbers below the results are the matching scores. Incorrect hits are circled in dotted lines. Right: IDSC+DP on the articulated shape database, same notations as for SC+DP.

Fig. 17. Typical shape images from the MPEG7 CE-Shape-1, one image from each class.

295

 TABLE 2

 Retrieval Rate (Bullseye) of Different Methods for the MPEG7 CE-Shape-1

Alg.	CSS	Vis. Parts	SC+TPS	Curve Edit	Dis. Set	MCSS	Gen. Model	MDS+	IDSC+
	[32]	[24]	[5]	[38]	[18]	[22]	[44]	SC+DP	DP
Score	75.44%	76.45%	76.51%	78.17%	78.38%	78.8%	80.03%	84.35%	85.40%

objects with articulated parts. Fig. 16 shows some detailed retrieval results for some of the images. The experiment also shows that IDSC works better than MDS for the articulated shapes. One reason is that the MDS may cause loss of information since it uses the Euclidean distance to *approximate* the inner-distance. To give an intuition of the difficulty of the database, a baseline algorithm using L_2 distance was also tested.

7.2 MPEG7 Shape Database

The widely tested MPEG7 CE-Shape-1 [24] database consists of 1400 silhouette images from 70 classes. Each class has 20 different shapes (see Fig. 17 for some typical images). The recognition rate is measured by the so-called Bullseye test: For every image in the database, it is matched with all other images and the top 40 most similar candidates

Fig. 18. Two retrieval examples for comparing SC and IDSC on the MPEG7 data set. The left column shows two shapes to be retrieved: a beetle and an octopus. The four right rows show the top one to nine matches, from top to bottom: SC and IDSC for the beetle, SC and IDSC for the octopus.

Fig. 19. (a) Kimia's data set 1 [40], 25 instances from six categories. (b) Kimia's data set 2 [39], 99 instances from nine categories.

TABLE 3 Retrieval Result on Kimia Data Set 1 [40] (Fig. 19a)

1 * 11			
IDSC+DP	25/25	24/25	25/25
MDS+SC+DP	23/25	20/25	19/25
Belongie et. al [5]	25/25	24/25	22/25
Gdalyahu and Weinshall [16]	25/25	21/25	19/25
Sharvit et. al [40]	23/25	21/25	20/25
Method	Top 1	Top 2	Тор 3

are counted. At most, 20 of the 40 candidates are correct hits. The score of the test is the ratio of the number of correct hits of all images to the highest possible number of hits (which is $20 \times 1,400$).

The parameters in our experiment are: n = 100 (300 were used in [5]), $n_d = 8$, $n_{\theta} = 12$, and k = 8. To handle mirrored shapes, we compare two point sequences (corresponding to shapes) with the original order and reversed order. Table 2 lists reported results from different algorithms. It shows that our algorithms outperform all the alternatives. The speed of our algorithm is in the same range as those of shape contexts [5], curve edit distance [38], and generative model [44]. Again, we observed that IDSC performs a little better than the articulation invariant signatures.

Note that, unlike the original SC+TPS framework used in [5], the appearance and bending information are not included in our experiment. The reason is twofold: 1) We want to focus more on the inner-distance itself and 2) this also makes our framework easy to use. In addition, the dynamic programming scheme is used to take advantage of the ordering information of the landmark points and the local coordinate framework (along the tangential of landmark points) are used to achieve rotation invariance.

To help understand this performance, we did two other experiments in the same setting where the only difference is the descriptors used: one uses SC another IDSC. The parameters in both experiments are: 64 sample points on each silhouette, eight distance bins, and eight orientation

TABLE 4Retrieval Result on Kimia Data Set 2 [39] (Fig. 19b)

Algorithm	1st	2nd	3rd	4th	5th	6th	7th	8th	9th	10th
SC [39]	97	91	88	85	84	77	75	66	56	37
Gen. Model [44]	99	97	99	98	96	96	94	83	75	48
Shock Edit [39]	99	99	99	98	98	97	96	95	93	82
MDS+SC+DP	99	98	98	98	97	99	97	96	97	85
IDSC+DP	99	99	99	98	98	97	97	98	94	79

Fig. 20. ETH-80 image set [26]. This data set contains 80 objects from eight classes, with 41 images of each object obtained from different viewpoints. Note: The original images are in color. See http://www.mis.informatik.tu-darmstadt.de/Research/Projects/categorization/ eth80-db.html for detail.

 TABLE 5

 Recognition Rates of Single Cue Approaches on the ETH-80 Database [26]

Alg.	Color Hist.	$D_x D_y$	Mag-Lap	PCA Masks	PCA Gray	SC Greedy	SC+DP	MDS+SC+DP	IDSC+DP
Rec. Rate	64.85%	79.79%	82.23%	83.41%	82.99%	86.40%	86.40%	86.80%	88.11%

All experiments results are from [26] except for MDS+SC+DP and IDSC+DP.

bins. To avoid the matching effect, shapes are compared using the simple shape context distance measure D_{sc} instead of DP (see Section 2.3 or [5]). The Bullseye score with SC is 64.59 percent, while IDSC gets a higher score of 68.83 percent. Fig. 18 shows some retrieval results, where we see that the IDSC is good for objects with parts while the SC favors global similarities. Examination of the MPEG7 data set shows that the complexity of shapes are mainly due to the part structures but not articulations, so the good performance of IDSC shows that the inner-distance is more effective at capturing part structures.

7.3 The Kimia Database

IDSC+DP and MDS+SC+DP are tested on two shape databases provided by Kimia's group [40], [39]. The first database [40] contains 25 images from 6 categories (Fig. 19a). It has been tested by [5], [40], [16]. We use parameters n = 100, $n_d = 5$, $n_{\theta} = 12$, and k = 4. The retrieval result is summarized as the number of first, second, and third closest matches that fall into the correct category. The results are listed in Table 3. It shows that IDSC slightly outperforms the other three reported methods and the MDS-based approach.

The second database [39] contains 99 images from nine categories (Fig. 19b) and has been tested by [39], [44]. We use parameters n = 300, $n_d = 8$, $n_{\theta} = 12$, and k = 4. Similar to results described above, the retrieval result is summarized as the number of top 1 to top 10 closest matches (the best possible result for each of them is 99). Table 4 lists the numbers of correct matches of several methods, which shows that our approaches performs comparably to the best approaches. One interesting observation is that the IDSC performs very similarly to the shock edit. This suggests a close relation between them as mentioned in the related work section.

7.4 The ETH-80 Image Set

The ETH-80 database [26] (see Fig. 20) contains 80 objects from eight categories. For each object, there are 41 images from different viewpoints. So, the database contains 3,280 images in

Fig. 21. Typical images from the Swedish leaf data set, one image per species. Note that some species are quite similar, e.g., the first, third, and ninth species.

TABLE 6 Recognition Rates on the Swedish Leaf Data Set

total. To analyze appearance and contour-based methods for object categorization, [26] first applied seven different approaches (including SC+DP), each with a single cue (either appearance or shape). Decision trees were then used to combine those approaches to get better performance. The test mode is leave-one-object-out cross-validation. Specifically, for each image in the database, it is compared to all the images from the other 79 objects. The recognition rate is averaged over all the objects.

We tested the MDS+SC+DP and the IDSC+DP on this data set with parameters: n = 128, $n_d = 8$, $n_{\theta} = 12$, and k = 16. Since only shape information is used, we compared the result with the seven single cue approaches in [26]. The recognition results are listed in Table 5. It shows that the IDSC works the best among all the single cue approaches.

7.5 Foliage Image Retrieval

In this section, we will demonstrate the application of the inner-distance on a real and challenging application, foliage image retrieval. Leaf images are very challenging for retrieval tasks due to their high between class similarity and large inner class deformations. Furthermore, occlusion and selffolding often damage leaf shape. In addition, some species

Fig. 22. Smithsonian data set, containing 343 leaf images from 93 species. One typical image from each species is shown.

Fig. 23. Recognition results on the Smithsonian data set. The curves show the recognition rate among the top N matched leaves.

Fig. 24. Three retrieval examples for IDSC and SPTC. The left column shows the query images. For each query image, the top four retrieving results are shown to its right, using IDSC and SPTC, respectively. The circled images come from the same species as the query image.

have very similar shape but different texture, which therefore makes the combination of shape and texture desirable.

7.5.1 Swedish Leaf Database

The Swedish leaf data set comes from a leaf classification project at Linköping University and the Swedish Museum of Natural History [42]. The data set contains isolated leaves from 15 different Swedish tree species, with 75 leaves per species. Fig. 21 shows some representative examples. Some preliminary classification work has been done in [42] by combining simple features like moments, area, and curvature, etc. We tested with Fourier descriptors, SC+DP, MDS+SC+DP, IDSC+DP, and SPTC+DP with parameters n = 128, $n_d = 8$, $n_{\theta} = 12$, $n_r = 8$, and k = 1. Each species contains 25 training samples and 50 testing samples. The recognition results with 1-nearest-neighbor are summarized in Table 6. Notice that, unlike other experiments, the articulation invariant signature works a little better than IDSC on the leaf images. One possible explanation is that, as a real image data set, the inner-angle for leaves are less robust due to boundary noise. Also, notice that SPTC improves IDSC as we had expected.

7.5.2 Smithsonian Isolated Leaf Database

This data set comes from (see Fig. 22) the Smithsonian project [1] whose aimed is to "build a digital collection of the Smithsonian's collection of specimens and provide means to access it with text and photos of plants." We designed an Electronic Field Guide image retrieval system that allows online visual searching. For example, during a filed test, a botanist can input a picture of an unknown leaf to the system and get the most visually similar leaves in a database. A detailed description of the system can be found in [2]. The task is very challenging because it requires querying from a database containing more than 100 species and real-time performance requires an efficient algorithm. In addition, the pictures taken in the filed are vulnerable to lighting changes and the leaves may not be flattened well.

Fig. 25. Human silhouettes matching. Left: Between adjacent frames. Right: Silhouettes separated by 20 frames, note that the hands are correctly matched. Only half of the matched pairs are shown for illustration.

In this paper, we test proposed approaches on a representative subset of the leaf image database in the system.³ This data set contains 343 leaves from 93 species (the number of leaves from different species varies). In the experiment, 187 of them are used as the training set and 156 as the testing set. Note that there are only two instances per class in the training set on average. The retrieval performance is evaluated using performance curves which show the recognition rate among the top N leaves, where N varies from 1 to 16.

For the efficiency reasons mentioned above, only 64 contour points are used (i.e., n = 64). The similarity between leaves is measured by the shape context distance D_{sc} (see Section 2.3 or [5]⁴) because it is faster than DP. Other parameters used in the experiment are $n_d = 5$, $n_{\theta} = 12$, and $n_r = 8$. Note that k is not needed because DP is not used here. The performance is plotted in Fig. 23. It shows that SPTC works significantly better than other methods. Fig. 24 gives some detailed query results of SPTC and IDSC from which we can see how SPTC improves retrieval result by also considering texture information.

7.6 Human Body Matching

In this experiment, we demonstrate the potential for using the proposed method on human body matching, which is important in human motion analysis. The data set is a human motion sequence from a stationary camera, collected at the Keck Lab at the University of Maryland. Silhouettes are extracted with background subtraction. Our task is to match the silhouettes from different frames. For adjacent frames, IDSC+DP performs very well (e.g., the left of Fig. 25). For two silhouettes separated by 20 frames, the articulation turns out to be large and the matching becomes challenging. The IDSC+DP also gives promising results (e.g., the right part in Fig. 25). An application of the innerdistance to human motion analysis can be found in [27].

8 CONCLUSION AND DISCUSSION

In this paper, we proposed using the inner-distance to build shape descriptors. We show that the inner-distance is articulation insensitive and is good for complicated shapes with part structures. Then, the inner-distance is used to build better shape representations. We first build articulation invariant signatures for 2D shapes by combining the innerdistance and MDS. After that, we extended the shape context with the inner-distance to form a new descriptor and designed a dynamic programming based method for shape

^{3.} http://www.cs.umd.edu/~hbling/Research/data/SI-93.zip.

It is based on a greedy matching and should not be confused with the bipartite matching-based approach.

matching and comparison. Then, the descriptor is extended to capture texture information in a natural and efficient way. In retrieval experiments on several data sets, our approach demonstrated excellent retrieval results in comparison with several other algorithms. In addition, the approach is tested on sequential human silhouettes. Good matching results show the potential for using inner-distances in tracking problems. From these experiments, we are confident that the inner-distance works for shapes with complex part structure, particularly with large articulation. In addition, it is worth noting that the technique had been applied for a real electronic field guide system [2].

There are several interesting issues about the innerdistance we want to address here. First, to compute the inner-distance the shape boundary is assumed to be known. This limits the approach to applications where the segmentation is available. Second, the inner-distance is sensitive to shape topology which sometimes causes problems. For example, occlusion may cause the topology of shapes to change. In addition, the inner-distance may not be proper for shapes involving little part structure and large deformation (no articulation).

ACKNOWLEDGMENTS

The authors would like to thank J.W. Kress, R. Russel, N. Bourg, G. Agarwal, P. Belhumeur, and N. Dixit for help with the Smithsonian leaf database, B. Kimia for the Kimia data set, O. Söderkvist for the Swedish leaf data, and Z. Yue and Y. Ran for the Keck sequence. They also thank the anonymous referees for their helpful comments and suggestions. This work is supported by US National Science Foundation (ITR-03258670325867). This research is supported in part by the US-Israel Binational Science Foundation grant number 2002/254.

REFERENCES

- "An Electronic Field Guide: Plant Exploration and Discovery [1] in the 21st Century," http://www1.cs.columbia.edu/cvgc/efg/ index.php, 2006.
- G. Agarwal, H. Ling, D. Jacobs, S. Shirdhonkar, W.J. Kress, R. Russell, N.A. Bourg, P. Belhumeur, N. Dixit, S. Feiner, D. [2] Mahajan, K. Sunkavalli, R. Ramamoorthi, and S. White, "First Steps toward an Electronic Field Guide for Plants," Taxon, vol. 55, no. 3, pp. 597-610, Aug. 2006.
- S. Agarwal, A. Awan, and D. Roth, "Learning to Detect Objects in [3] Images via a Sparse, Part-Based Representation," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 26, no. 11, pp. 1475-1490, Nov. 2004.
- [4] R. Basri, L. Costa, D. Geiger, and D. Jacobs, "Determining the Similarity of Deformable Shapes," Vision Research, vol. 38, pp. 2365-2385, 1998.
- S. Belongie, J. Malik, and J. Puzicha, "Shape Matching and Object Recognition Using Shape Context," IEEE Trans. Pattern Analysis [5] and Machine Intelligence, vol. 24, no. 4, pp. 509-522, Apr. 2002.
- I. Biederman, "Recognition-by-Components: A Theory of Human [6] Image Understanding," Psychological Rev., vol. 94, no. 2, pp. 115-147, 1987.
- H. Blum, "Biological Shape and Visual Science," J. Theorectical [7]
- Biology, vol. 38, pp. 205-287, 1973. F.L. Bookstein, "Principal Warps: Thin-Plate-Splines and Decom-position of Deformations," IEEE Trans. Pattern Analysis and [8] Machine Intelligence, vol. 11, no. 6, pp. 567-585, 1989. I. Borg and P. Groenen, Modern Multidimensional Scaling: Theory
- and Applications. Springer, 1997.

- [10] H. Chen, P. Belhumeur, and D.W. Jacobs, "In Search of Illumination Invariants," Proc. IEEE Conf. Computer Vision and Pattern Recognition, vol. I, pp. 254-261, 2000.
- [11] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, Introduction to Algorithms, second ed. MIT Press, 2001.
- A. Elad-Elbaz and R. Kimmel, "On Bending Invariant Signatures [12] for Surfaces," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 25, no. 10, pp. 1285-1295, Oct. 2003.
- [13] J. Feldman and M. Singh, "Information along Contours and Object Boundaries," Psychological Rev., vol. 112, no. 1, pp. 243-252, 2005.
- [14] P. Felzenszwalb and D. Huttenlocher, "Pictorial Structures for Object Recognition," Int'l J. Computer Vision, vol. 61, no. 1, pp. 55-79, 2005.
- [15] R. Fergus, P. Perona, and A. Zisserman, "Object Class Recognition by Unsupervised Scale-Invariant Learning," Proc. IEEE Conf. Computer Vision and Pattern Recognition, vol. II, pp. 264-271, 2003.
- [16] Y. Gdalyahu and D. Weinshall, "Flexible Syntactic Matching of Curves and Its Application to Automatic Hierarchical Classification of Silhouettes," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 21, no. 12, pp. 1312-1328, Dec. 1999.
- [17] L. Gorelick, M. Galun, E. Sharon, R. Basri, and A. Brandt, "Shape Representation and Classification Using the Poisson Equation, Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 61-67, 2004.
- [18] C. Grigorescu and N. Petkov, "Distance Sets for Shape Filters and Shape Recognition," IEEE Trans. Image Processing, vol. 12, no. 10, pp. 1274-1286, 2003.
- [19] W. Grimson, Object Recognition by Computer: The Role of Geometric Constraints. MIT Press, 1990.
- [20] A.B. Hamza and H. Krim, "Geodesic Object Representation and Recognition," Discrete Geometry for Computer Imagery, I. Nyström et al., eds., pp. 378-387, 2003.
- [21] D.D. Hoffman and W.A. Richards, "Parts of Recognition," Cognition, vol. 18, pp. 65-96, 1985.
- [22] A.C. Jalba, M.H.F. Wilkinson, and J.B.T.M. Roerdink, "Shape Representation and Recognition through Morphological Curvature Scale Spaces," IEEE Trans. Image Processing, vol. 15, no. 2, pp. 331-341, 2006.
- [23] B.B. Kimia, A.R. Tannenbaum, and S.W. Zucker, "Shapes, Shocks, and Deformations, I: The Components of Shape and the Reaction-Diffusion Space," Int'l J. Computer Vision, vol. 15, no. 3, pp. 189-224, 1995.
- [24] L.J. Latecki, R. Lakamper, and U. Eckhardt, "Shape Descriptors for Non-Rigid Shapes with a Single Closed Contour," Proc. IEEE Conf. Computer Vision and Pattern Recognition, vol. I, pp. 424-429, 2000.
- [25] S. Lazebnik, C. Schmid, and J. Ponce, "A Sparse Texture Representation Using Affine-Invariant Regions," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 27, no. 8, pp. 1265-1278, Aug. 2005.
- [26] B. Leibe and B. Schiele, "Analyzing Appearance and Contour Based Methods for Object Categorization," Proc. IEEE Conf. Computer Vision and Pattern Recognition, vol. II, pp. 409-415, 2003.
- J. Li, S.K. Zhou, and R. Chellappa, "Appearance Modeling under [27] Geometric Context," Proc. IEEE Int'l Conf. Computer Vision, vol. II, pp. 1252-1259, 2005.
- [28] H. Ling and D.W. Jacobs, "Deformation Invariant Image Matching," Proc. IEEE Int'l Conf. Computer Vision, vol. II, pp. 1466-1473, 2005.
- [29] H. Ling and D.W. Jacobs, "Using the Inner-Distance for Classification of Articulated Shapes," Proc. IEEE Conf. Computer Vision and Pattern Recognition, vol. II, pp. 719-726, 2005.
- T. Liu and D. Geiger, "Visual Deconstruction: Recognizing Articulated Objects," Proc. Energy Minimization Methods in Computer Vision and Pattern Recognition, pp. 295-309, 1997.
- [31] K. Mikolajczyk and C. Schmid, "A Performance Evaluation of Local Descriptors," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 27, no. 10, pp. 1615-1630, Oct. 2005.
- [32] F. Mokhtarian, S. Abbasi, and J. Kittler, "Efficient and Robust Retrieval by Shape Content through Curvature Scale Space,' Image Databases and Multi-Media Search, A.W.M. Smeulders and R. Jain eds., pp. 51-58, World Scientific, 1997.
- [33] G. Mori and J. Malik, "Recognizing Objects in Adversarial Clutter: Breaking a Visual CAPTCHA," Proc. IEEE Conf. Computer Vision and Pattern Recognition, vol. I, pp. 1063-6919, 2003.
- [34] E.N. Mortensen, H. Deng, and L. Shapiro, "A SIFT Descriptor with Global Context," Proc. IEEE Conf. Computer Vision and Pattern Recognition, vol. I, pp. 184-190, 2005.

- [35] R. Osada, T. Funkhouser, B. Chazelle, and D. Dobkin, "Shape Distributions," ACM Trans. Graphics, vol. 21, no. 4, pp. 807-832, 2002.
- [36] E.G.M. Petrakis, A. Diplaros, and E. Milios, "Matching and Retrieval of Distorted and Occluded Shapes Using Dynamic Programming," *IEEE Trans. Pattern Analysis and Machine Intelli*gence, vol. 24, no. 11, pp. 1501-1516, Nov. 2002.
- [37] H. Schneiderman and T. Kanade, "Object Detection Using the Statistics of Parts," *Int'l J. Computer Vision*, vol. 56, no. 3, pp. 151-177, 2004.
- [38] T. Sebastian, P. Klein, and B. Kimia, "On Aligning Curves," *IEEE Trans. Pattern Analysis and Machine Intelligence*, vol. 25, no. 1, pp. 116-125, Jan. 2003.
- [39] T.B. Sebastian, P.N. Klein, and B.B. Kimia, "Recognition of Shapes by Editing Their Shock Graphs," *IEEE Trans. Pattern Analysis and Machine Intelligence*, vol. 26, no. 5, pp. 550-571, May 2004.
 [40] D. Sharvit, J. Chan, H. Tek, and B. Kimia, "Symmetry-Based
- [40] D. Sharvit, J. Chan, H. Tek, and B. Kimia, "Symmetry-Based Indexing of Image Database," J. Visual Comm. and Image Representation, vol. 9, no. 4, pp. 366-380, 1998.
- [41] K. Siddiqi, A. Shokoufandeh, S.J. Dickinson, and S.W. Zucker, "Shock Graphs and Shape Matching," *Int'l J. Computer Vision*, vol. 35, no. 1, pp. 13-32, 1999.
 [42] O. Söderkvist, "Computer Vision Classification of Leaves from
- [42] O. Söderkvist, "Computer Vision Classification of Leaves from Swedish Trees," master thesis, Linköping Univ., 2001.
- [43] A. Thayananthan, B. Stenger, P.H.S. Torr, and R. Cipolla, "Shape Context and Chamfer Matching in Cluttered Scenes," *Proc. IEEE Conf. Computer Vision and Pattern Recognition*, vol. I, pp. 127-133, 2003.
- [44] Z. Tu and A.L. Yuille, "Shape Matching and Recognition-Using Generative Models and Informative Features," Proc. European Conf. Computer Vision, vol. 3, pp. 195-209, 2004.
- [45] R.C. Veltkamp and M. Hagedoorn, "State of the Art in Shape Matching," *Principles of Visual Information Retrieval*, pp. 89-119, 2001.
- [46] I. Weiss and M. Ray, "Recognizing Articulated Objects Using a Region-Based Invariant Transform," *IEEE Trans. Pattern Analysis* and Machine Intelligence, vol. 27, no. 10, pp. 1660-1665, Oct. 2005.
- [47] H. Zhang and J. Malik, "Learning a Discriminative Classifier Using Shape Context Distances," Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2003.
- [48] L. Zhao and L.S. Davis, "Segmentation and Appearance Model Building from an Image Sequence," Proc. IEEE Int'l Conf. Image Processing, vol. 1, pp. 321-324, 2005.

Haibin Ling received the BS degree in mathematics and the MS degree in computer science from Peking University, China, in 1997 and 2000, respectively. After working at Microsoft Research Asia for one year, he joined the University of Maryland at College Park, where he is currently working toward the PhD degree in computer science. His research interests include computer vision, human computer interaction, and machine learning. He and his coauthors

received the Best Student Paper Award at the ACM Symposium on User Interface Software and Technology (UIST) in 2003. He is a student member of the IEEE.

David W. Jacobs received the BA degree from Yale University in 1982. From 1982 to 1985, he worked for Control Data Corporation on the development of database management systems and attended graduate school in computer science at New York University. From 1985 to 1992, he attended the Massachusetts Intsitute of Technology, where he received the MS and PhD degrees in computer science. From 1992 to 2002, he was a research scientist and then a

senior research scientist at the NEC Research Institute in Princeton, New Jersey. In 1998, he spent a sabbatical at the Royal Institute of Technology (KTH) in Stockholm. Since 2002, he has been an associate professor of computer science at the University of Maryland, College Park. Dr. Jacobs' research has focused on human and computer vision, especially in the areas of object recognition and perceptual organization. He has also published articles in the areas of motion understanding, memory and learning, computer graphics, human-computer interaction, and computational geometry. He and his coauthors received honorable mention for the best paper award at CVPR 2000. He also coauthored a paper that received the best student paper award at UIST 2003. He is a member of the IEEE and the IEEE Computer Society.

For more information on this or any other computing topic, please visit our Digital Library at www.computer.org/publications/dlib.

